
M5i.33xx-x16
high-speed 12 bit Digitizer,

A/D converter board
for PCI Express bus and PXI Express bus

Valid for all versions

Hardware Manual
Software Driver Manual

Manual printed: 23. February 2024



(c) SPECTRUM INSTRUMENTATION GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY

SBench, digitizerNETBOX, generatorNETBOX and hybridNETBOX are registered trademarks of Spectrum Instrumentation GmbH.
Microsoft, Visual C++, Windows, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, 
Windows 10, Windows 11 and Windows Server are trademarks/registered trademarks of Microsoft Corporation.
LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.
Delphi and C++Builder are trademarks or registered trademarks of Embarcadero Technologies, Inc.
Keysight VEE, VEE Pro and VEE OneLab are trademarks/registered trademarks of Keysight Technologies, Inc.
FlexPro is a registered trademark of Weisang GmbH & Co. KG.
PCIe, PCI Express, PCI-X and PCI-SIG are trademarks of PCI-SIG.
PICMG and CompactPCI are trademarks of the PCI Industrial Computation Manufacturers Group.
PXI is a trademark of the PXI Systems Alliance.
LXI is a registered trademark of the LXI Consortium.
IVI is a registered trademark of the IVI Foundation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Python is a trademark/registered trademark of Python Software Foundation.
Julia is a trademark/registered trademark of Julia Computing, Inc.
Intel and Intel Core i3, Core i5, Core i7, Core i9 and Xeon are trademarks and/or registered trademarks of Intel Corporation.
AMD, Opteron, Sempron, Phenom, FX, Ryzen and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices.
Arm is a trademark or registered trademark of Arm Limited (or its subsidiaries).
NVIDIA, CUDA, GeForce, Quadro, Tesla and Jetson are trademarks and/or registered trademarks of NVIDIA Corporation.

 



Table of Contents

(c) Spectrum Instrumentation GmbH 3

Table of Contents
Table of Contents............................................................................................................... 3

Safety Instructions ............................................................................................................. 9
Symbols and Safety Labels ....................................................................................................................................................  9
General safety information ....................................................................................................................................................  9
Requirements for users and duties for operators........................................................................................................................  9

General safety at work....................................................................................................................................................  9
Bringing the product into service ..........................................................................................................................................  10
Intended use ......................................................................................................................................................................  10

Application area of the product......................................................................................................................................  10
Requirements for the technical state of the product ............................................................................................................  10
Requirements for operation ............................................................................................................................................  10
Electrical safety and power supply..................................................................................................................................  10
Requirements for the location .........................................................................................................................................  10
Requirements on the ventilation ......................................................................................................................................  10
Maintenance................................................................................................................................................................  10
Repair/Service.............................................................................................................................................................  11
Cleaning the module housing (NETBOX devices, cables, amplifiers, systems only) ................................................................  11
Opening the module (NETBOX devices, amplifiers only)....................................................................................................  11
Dismounting parts of the card (instrument card only) .........................................................................................................  11

Markings and Labelling.......................................................................................................................................................  11

Packing list...................................................................................................................... 12

Introduction..................................................................................................................... 13
Preface .............................................................................................................................................................................  13
Overview ..........................................................................................................................................................................  13
General Information ...........................................................................................................................................................  13
Different models of the M5i.33xx series ................................................................................................................................  14
Additional options ..............................................................................................................................................................  15

Star-Hub......................................................................................................................................................................  15
The Spectrum type plate ......................................................................................................................................................  16
Hardware information.........................................................................................................................................................  17

Block Diagrams ............................................................................................................................................................  17
Technical Data .............................................................................................................................................................  18
Frequency Response Plots ..............................................................................................................................................  21
Dynamic Parameters 10.0 GS/s 4.7 GHz models ............................................................................................................  23
Dynamic Parameters 10.0 GS/s 3.0 GHz models ............................................................................................................  23
Dynamic Parameters 6.4 GS/s models............................................................................................................................  23
Dynamic Parameters 3.2 GS/s models............................................................................................................................  24
RMS Noise Level (Zero Noise)........................................................................................................................................  25

M5i.33xx Order Information ...............................................................................................................................................  26

Hardware Installation ..................................................................................................... 27
ESD Precautions .................................................................................................................................................................  27
Sources of noise.................................................................................................................................................................  27
Cooling Precautions............................................................................................................................................................  27
Connector Handling Precautions ..........................................................................................................................................  27
M5i PCIe Cards .................................................................................................................................................................  28

System Requirements.....................................................................................................................................................  28
Installing the M5i board in the system .............................................................................................................................  28
Additional notes on PCIe x16 slot retention......................................................................................................................  29
Providing additional power to M5i.xxxx-x16 cards...........................................................................................................  29
Installing multiple boards synchronized by Star-Hub option ................................................................................................  30
Shipment of systems with Spectrum cards installed ............................................................................................................  31

Software Driver Installation and Driver Update................................................................ 32
Windows ..........................................................................................................................................................................  32

Before initial installation ................................................................................................................................................  32
Running the driver Installer/Update.................................................................................................................................  32
After installation ...........................................................................................................................................................  33

Linux.................................................................................................................................................................................  34
Overview ....................................................................................................................................................................  34
Driver Installation with Installation Script ..........................................................................................................................  34
Standard Driver Update ................................................................................................................................................  35
Compilation of kernel driver sources (optional and local cards only) ...................................................................................  35
Update of a self compiled kernel driver ...........................................................................................................................  35
Installing the library only without a kernel (for remote devices) ...........................................................................................  36
Installation from Spectrum Repository ..............................................................................................................................  36
Control Center .............................................................................................................................................................  37



Table of Contents

(c) Spectrum Instrumentation GmbH 4

Software ......................................................................................................................... 39
Software Overview.............................................................................................................................................................  39
Card Control Center ...........................................................................................................................................................  39

Discovery of Remote Cards, digitizerNETBOX/generatorNETBOX/hybridNETBOX products ..................................................  40
Wake On LAN of digitizerNETBOX/generatorNETBOX/hybridNETBOX.............................................................................  40
Netbox Monitor ...........................................................................................................................................................  41
Device identification .....................................................................................................................................................  41
Hardware information...................................................................................................................................................  42
Firmware information ....................................................................................................................................................  42
Software License information..........................................................................................................................................  43
Driver information.........................................................................................................................................................  43
Installing and removing Demo cards ...............................................................................................................................  44
Feature upgrade...........................................................................................................................................................  44
Software License upgrade..............................................................................................................................................  44
Performing card calibration (A/D only) ...........................................................................................................................  44
Performing memory test .................................................................................................................................................  45
Transfer speed test ........................................................................................................................................................  45
Debug logging for support cases ....................................................................................................................................  45
Device mapping ...........................................................................................................................................................  46
Firmware upgrade ........................................................................................................................................................  46

Accessing the hardware with SBench 6.................................................................................................................................  47
C/C++ Driver Interface.......................................................................................................................................................  47

Header files .................................................................................................................................................................  47
General Information on Windows 64 bit drivers...............................................................................................................  48
Microsoft Visual C++ 6.0, 2005 and newer 32 Bit...........................................................................................................  48
Microsoft Visual C++ 2005 and newer 64 Bit..................................................................................................................  48
Linux Gnu C/C++ 32/64 Bit .........................................................................................................................................  48
C++ for .NET...............................................................................................................................................................  49
Other Windows C/C++ compilers 32 Bit ........................................................................................................................  49
Other Windows C/C++ compilers 64 Bit ........................................................................................................................  49

Driver functions ..................................................................................................................................................................  49
Delphi (Pascal) Programming Interface ..................................................................................................................................  54

Driver interface ............................................................................................................................................................  54
Examples.....................................................................................................................................................................  56

.NET programming languages .............................................................................................................................................  57
Library ........................................................................................................................................................................  57
Declaration..................................................................................................................................................................  57
Using C#.....................................................................................................................................................................  57
Using Managed C++/CLI..............................................................................................................................................  59
Using VB.NET ..............................................................................................................................................................  59
Using J# ......................................................................................................................................................................  59

Python Programming Interface and Examples.........................................................................................................................  60
Driver interface ............................................................................................................................................................  60
Examples.....................................................................................................................................................................  60

Java Programming Interface and Examples............................................................................................................................  61
Driver interface ............................................................................................................................................................  61
Examples.....................................................................................................................................................................  61

Julia Programming Interface and Examples ............................................................................................................................  62
Driver interface ............................................................................................................................................................  62
Examples.....................................................................................................................................................................  62

LabVIEW driver and examples .............................................................................................................................................  63
MATLAB driver and examples ..............................................................................................................................................  63
SCAPP – CUDA GPU based data processing.........................................................................................................................  64



Table of Contents

(c) Spectrum Instrumentation GmbH 5

Programming the Board .................................................................................................. 65
Overview ..........................................................................................................................................................................  65
Register tables ...................................................................................................................................................................  65
Programming examples.......................................................................................................................................................  65
Initialization.......................................................................................................................................................................  66
Initialization of Remote Products ...........................................................................................................................................  66
Error handling....................................................................................................................................................................  66
Gathering information from the card.....................................................................................................................................  67

Card type....................................................................................................................................................................  68
Hardware and PCB version ...........................................................................................................................................  68
Reading currently used PXI slot No. (M4x only) ................................................................................................................  69
Firmware versions.........................................................................................................................................................  69
Production date ............................................................................................................................................................  69
Last calibration date (analog cards only) .........................................................................................................................  70
Serial number ..............................................................................................................................................................  70
Maximum possible sampling rate ...................................................................................................................................  70
Installed memory ..........................................................................................................................................................  70
Installed features and options .........................................................................................................................................  70
Miscellaneous Card Information .....................................................................................................................................  71
Function type of the card ...............................................................................................................................................  72
Used type of driver .......................................................................................................................................................  72
Custom modifications ....................................................................................................................................................  73

Reset.................................................................................................................................................................................  73

Analog Inputs.................................................................................................................. 74
Channel Selection ..............................................................................................................................................................  74

Important note on channel selection ................................................................................................................................  74
Setting up the inputs ...........................................................................................................................................................  75

Input ranges.................................................................................................................................................................  75
Input offset...................................................................................................................................................................  76
Read out of input features ..............................................................................................................................................  76
Automatic on-board calibration of the offset and gain settings............................................................................................  77

Acquisition modes ........................................................................................................... 78
Overview ..........................................................................................................................................................................  78

Setup of the mode ........................................................................................................................................................  78
Commands........................................................................................................................................................................  79

Card Status..................................................................................................................................................................  80
Acquisition cards status overview ...................................................................................................................................  81
Generation card status overview ....................................................................................................................................  81
Data Transfer ...............................................................................................................................................................  81

Standard Single acquisition mode ........................................................................................................................................  84
Card mode ..................................................................................................................................................................  84
Memory, Pre- and Posttrigger .........................................................................................................................................  84
Example ......................................................................................................................................................................  84

FIFO Single acquisition mode ..............................................................................................................................................  85
Card mode ..................................................................................................................................................................  85
Length and Pretrigger....................................................................................................................................................  85
Difference to standard single acquisition mode.................................................................................................................  85
Example FIFO acquisition ..............................................................................................................................................  86

Limits of pre trigger, post trigger, memory size.......................................................................................................................  86
Buffer handling ..................................................................................................................................................................  87
Data organization ..............................................................................................................................................................  90

Sample format..............................................................................................................................................................  91
Converting ADC samples to voltage values ......................................................................................................................  91

Clock generation ............................................................................................................. 92
Overview ..........................................................................................................................................................................  92

Clock Mode Register.....................................................................................................................................................  92
The different clock modes ..............................................................................................................................................  92

Details on the different clock modes......................................................................................................................................  93
Standard internal sampling clock (PLL) .............................................................................................................................  93
Oversampling ..............................................................................................................................................................  93
External clock (reference clock) ......................................................................................................................................  94



Table of Contents

(c) Spectrum Instrumentation GmbH 6

Trigger modes and related registers ................................................................................ 96
General Description............................................................................................................................................................  96
Trigger Engine Overview.....................................................................................................................................................  96
Trigger masks ....................................................................................................................................................................  97

Trigger OR mask ..........................................................................................................................................................  97
Trigger AND mask........................................................................................................................................................  98

Software trigger .................................................................................................................................................................  99
Force- and Enable trigger ..................................................................................................................................................  100
Trigger delay ...................................................................................................................................................................  100
Trigger holdoff .................................................................................................................................................................  101

Trigger Counter ..........................................................................................................................................................  101
Main analog external trigger (Ext0) ....................................................................................................................................  102

Trigger Mode.............................................................................................................................................................  102
 Trigger Input Termination............................................................................................................................................  102
Trigger level...............................................................................................................................................................  102
Detailed description of the external analog trigger modes ...............................................................................................  103

External logic trigger (X0, X1, X2, X3) ................................................................................................................................  105
Trigger Mode.............................................................................................................................................................  105
Input Termination........................................................................................................................................................  105
Detailed description of the logic trigger modes...............................................................................................................  106

Channel Trigger ...............................................................................................................................................................  108
Overview of the channel trigger registers.......................................................................................................................  108
Channel trigger level...................................................................................................................................................  109
Detailed description of the channel trigger modes...........................................................................................................  111

Multi Purpose I/O Lines ................................................................................................. 116
On-board I/O lines (X0, X1, X2, X3) ..................................................................................................................................  116

Programming the behavior...........................................................................................................................................  116
Input Termination........................................................................................................................................................  117
Using asynchronous I/O .............................................................................................................................................  117
Special behavior of trigger output.................................................................................................................................  117
Synchronous digital inputs ...........................................................................................................................................  118

Mode Multiple Recording ............................................................................................... 120
Recording modes .............................................................................................................................................................  120

Standard Mode..........................................................................................................................................................  120
FIFO Mode ................................................................................................................................................................  120

Limits of pre trigger, post trigger, memory size.....................................................................................................................  121
Multiple Recording and Timestamps..............................................................................................................................  121

Trigger Modes .................................................................................................................................................................  122
Programming examples.....................................................................................................................................................  123

Mode 8 bit Storage (Low-Resolution) ............................................................................. 124
Overview ........................................................................................................................................................................  124
Available acquisition modes ..............................................................................................................................................  124
Enabling hardware data conversion ...................................................................................................................................  124
Sample format .................................................................................................................................................................  125
Limits of pre trigger, post trigger, memory size.....................................................................................................................  125
Converting reduced ADC samples to voltage values .............................................................................................................  126

Timestamps ................................................................................................................... 127
General information .........................................................................................................................................................  127

Example for setting timestamp mode: ............................................................................................................................  128
Timestamp modes.............................................................................................................................................................  128

Standard mode ..........................................................................................................................................................  128
StartReset mode..........................................................................................................................................................  128
Refclock mode............................................................................................................................................................  129

Reading out the timestamps ...............................................................................................................................................  130
General.....................................................................................................................................................................  130
Data Transfer using DMA ............................................................................................................................................  131
Data Transfer using Polling ..........................................................................................................................................  132
Comparison of DMA and polling commands..................................................................................................................  133
Data format ...............................................................................................................................................................  133

Combination of Memory Segmentation Options with Timestamps ...........................................................................................  135
Multiple Recording and Timestamps..............................................................................................................................  135



Table of Contents

(c) Spectrum Instrumentation GmbH 7

Pulse Generator (Firmware Option) ............................................................................... 136
General Information .........................................................................................................................................................  136
Principle of Operation.......................................................................................................................................................  137
Setting up the Pulse Generator ...........................................................................................................................................  138

Enabling, disabling and resetting a pulse generator........................................................................................................  138
Defining the basic pulse parameters..............................................................................................................................  138
Delaying (phase shifting) the Outputs ............................................................................................................................  139
Defining the trigger behavior .......................................................................................................................................  139
Configuring the pulse generator’s trigger source.............................................................................................................  140
Configuring Multi Purpose lines to output generated pulses ..............................................................................................  142

Programming Example ......................................................................................................................................................  143

Option Star-Hub ............................................................................................................ 144
Star-Hub introduction ........................................................................................................................................................  144

Star-Hub trigger engine ...............................................................................................................................................  144
Star-Hub clock engine .................................................................................................................................................  144

Software Interface ............................................................................................................................................................  144
Star-Hub Initialization..................................................................................................................................................  144
Setup of Synchronization.............................................................................................................................................  146
Setup of Trigger .........................................................................................................................................................  147
Run the synchronized cards .........................................................................................................................................  147
Error Handling ...........................................................................................................................................................  148

Option Remote Server ................................................................................................... 149
Introduction .....................................................................................................................................................................  149
Installing and starting the Remote Server .............................................................................................................................  149

Windows ..................................................................................................................................................................  149
Linux .........................................................................................................................................................................  149

Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX .......................................................................................  149
Discovery Function......................................................................................................................................................  149
Finding the digitizerNETBOX/generatorNETBOX/hybridNETBOX in the network ...............................................................  150
Troubleshooting..........................................................................................................................................................  151

Accessing remote cards ....................................................................................................................................................  151

Mode Block Average (Firmware Option) ........................................................................ 152
Overview ........................................................................................................................................................................  152

General Information....................................................................................................................................................  152
Principle of operation..................................................................................................................................................  152
Setting up the Acquisition ............................................................................................................................................  153

Recording modes .............................................................................................................................................................  153
Standard Mode..........................................................................................................................................................  153
FIFO Mode ................................................................................................................................................................  153

Limits of pre trigger, post trigger, memory size.....................................................................................................................  154
Averaging Modes ............................................................................................................................................................  154

Standard Average Mode.............................................................................................................................................  154
Threshold Defined Averaging (TDA) ..............................................................................................................................  154

Clock Modes ...................................................................................................................................................................  155
Trigger Modes .................................................................................................................................................................  155
Output Data Format..........................................................................................................................................................  156
Data organization ............................................................................................................................................................  156
Programming examples.....................................................................................................................................................  156

Appendix ...................................................................................................................... 158
Error Codes .....................................................................................................................................................................  158

Spectrum Knowledge Base ..........................................................................................................................................  159
Temperature and fan speed sensors....................................................................................................................................  160

Base Card Temperature read-out registers......................................................................................................................  160
Front-end Module read-out registers ..............................................................................................................................  160
Base Card fan speed read-out registers .........................................................................................................................  160
Temperature hints .......................................................................................................................................................  160
33xx temperatures and limits .......................................................................................................................................  161

Details on M5i cards I/O lines...........................................................................................................................................  162
Multi-Purpose I/O Lines ...............................................................................................................................................  162
Interfacing with clock input ..........................................................................................................................................  162
Interfacing with clock output.........................................................................................................................................  162

Details on M5i cards status LED .........................................................................................................................................  163
Turning on card identification LED ................................................................................................................................  163

Continuous memory for increased data transfer rate .............................................................................................................  164
Background ...............................................................................................................................................................  164
Setup on Linux systems ................................................................................................................................................  165
Setup on Windows systems..........................................................................................................................................  166
Usage of the buffer .....................................................................................................................................................  166



Table of Contents

(c) Spectrum Instrumentation GmbH 8

List of Figures ................................................................................................................ 168

List of Tables ................................................................................................................. 170



Safety Instructions Symbols and Safety Labels

(c) Spectrum Instrumentation GmbH 9

Safety Instructions
This chapter contains information about the following topics:

• General safety information
• Requirements for users and duties for operators
• Intended use
• Markings and Labelling

Symbols and Safety Labels

General safety information
Carefully read the documentation (Installation manual and hardware manual) that belongs to the product prior to the start-up. Please observe 
the product safety instructions and the following safety notices to avoid health issues or damage to the device.

The manufacturer does not assume any liability for damages resulting from improper handling, unintended use or non-observance of the safety 
precautions.

Applicable regulations and laws governing the location and use of the product must be observed and all accident prevention and occupa-
tional safety regulations must be complied with.

Requirements for users and duties for operators
The product may be assembled, operated and maintained only if you have the necessary qualification and experience for this product. Im-
proper use or use by a user without sufficient qualification can lead to damages or injuries to one's health or damages to property. The as-
sembler of the system is responsible for the safety of any system incorporating the equipment.

General safety at work
The existing regulations for safety at work and accident prevention must be followed. All applicable regulations and statutes regarding op-
eration must be strictly followed when using this product.

Table 1: Symbols and Safety Labels 

Label Where Description

Cards ESD symbol
Parts can be damaged by electrostatic discharge. Follow these precautions:
Avoid touching pins, leads, or circuitry.
Always be properly grounded when touching a static-sensitive component or assembly.

NETBOX chassis GND symbol
To enhance the immunity of the equipment against conducted and radiated RF disturbance, sensitive electrical circuits are connected to the 
chassis.

Protective Conductor Class I
This movable devices of protection class I is equipped with a cable with additional protective conductor and a protective contact plug. The 
device may only be connected to the protective conductor system of the fixed electrical installation, which is at ground potential.

Products Labelling for CE conformity
Spectrum confirms with the CE marking affixed to the product or its packaging that the product complies with the product-specific applicable 
European directives. The CE declaration of conformity for the product is available upon request.

Products Labelling for WEEE
The WEEE symbol on the product or its packaging indicates that the product must not be disposed of with other waste. The user is obliged 
to collect the old devices separately and to make them available to the WEEE take-back system for recycling.

NETBOX chassis Labelling for battery disposal
Batteries must not be disposed of with household waste. You are legally obliged to return old batteries so that proper disposal can be guar-
anteed. You can dispose of used batteries at a municipal collection point or in local stores

Manual Important part of the manual with safety related content

Manual Additional information inside the manual which helps to understand a topic in more detail



Safety Instructions Bringing the product into service

(c) Spectrum Instrumentation GmbH 10

Bringing the product into service
The following steps need to be done when first bringing the product into service:

• Please check the content of the delivery against the above stated packing list upon first opening of the package
• Check the products before connecting them to any power source for any damages. Do not connect a damaged product to any power 

source
• Be sure to have the correct knowledge to install this product
• Carefully read the installation manual and take the stated precautions
• Follow the installation process step by step as described in this manual
• The product relies on proper cooling as described in this manual. Make sure to avoid to restrict the airflow to any part. Do not cover or 

block any cooling fans or cooling vents

Intended use

Application area of the product
The device has been developed for indoor use in controlled laboratory and industrial environments not exceeding an operating height of 
2000 m and for an ambient temperature of 0°C to +40°C with non-condensing humidity up to 10% to 90%. 

Requirements for the technical state of the product
The product is designed in accordance with state-of-the-art technology and recognized safety rules. The product may be operated only in a 
technically flawless condition and according to the intended purpose and with regard to safety and dangers as stated in the respective product 
documentation. If the product is not used according to its intended purpose, the protection of the product may be impaired.

Requirements for operation
Use the product only according to the specifications in the corresponding User's Guide. With any deviating operation, the product safety is 
no longer ensured.

The use of the product is permitted only in accordance with the specifications and information of the respective user manual. Product safety 
is not guaranteed in the event of deviating use. Use in wet or humid environments or in potentially explosive areas is not permitted.

The installer is responsible for the safety of the system in which the device is installed.

Electrical safety and power supply
Observe the regulations applicable at the operating location concerning electrical safety as well as the laws and regulations concerning work 
safety! Connect only current circuits with safety extra-low voltage in accordance with EN 61140 (degree of protection III) to the connections 
of the module.

Ensure that the connection and setting values are being followed (see the information in the chapter “Technical data”). Do not apply any 
voltages to the connections of the module that do not correspond to the specifications of the respective connection. When setting up the ap-
pliance, care must be taken to ensure that the power plug of the chassis is easily accessible and the power cable can be unplugged in the 
event of an emergency shut-down.

Use only approved cables at the connections of the product. Adhere to the maximum permissible cable lengths! Do not use any damaged 
cables! Never apply force to insert a plug into a socket. Ensure that there is no contamination in and on the connection, that the plug fits the 
socket, and that you correctly aligned the plugs with the connection.

There is no danger from the device in case of power supply interruption or shut down.

Requirements for the location
The housing and the connectors of the module as well as the plug connectors of the cables meet the degree of protection IP20. Position the 
module on a smooth, level and solid underground. The module or the module stack must always be securely fastened.

The functionality and safety of the device is only guaranteed at operation conditions of IP20 and contamination class II up to a light contam-
ination by non-conductive materials.

Requirements on the ventilation
Keep the module away from heat sources and protect it against direct exposure to the sun. The free space above and behind the module 
must be selected so that sufficient air circulation is ensured. During normal operation there are no hot surfaces that pose any danger to the 
operator.

Maintenance
The product is maintenance-free.



Safety Instructions Markings and Labelling

(c) Spectrum Instrumentation GmbH 11

Repair/Service
In the event of a necessary repair, the product must be returned to the manufacturer. Before returning any good get in contact with the support 
group and obtain a RMA code. The support group can be reached by email: Support@spec.de

Please ensure suitable packaging to avoid damage during transport.

World-wide service address is:
Spectrum Instrumentation GmbH
Ahrensfelder Weg 13-17
22927 Grosshansdorf
Germany

Cleaning the module housing (NETBOX devices, cables, amplifiers, systems only)
Use a dry or lightly moistened, soft cloth for cleaning the module housing. Do not user any sprays, solvents or abrasive cleaners which could 
damage the housing. Ensure that no moisture enters the housing. Never spray cleaning agents directly onto the module.

Opening the module (NETBOX devices, amplifiers only)
Do not open or change the module housing! Work on the module housing may only be performed by the manufacturer. 

Dismounting parts of the card (instrument card only)
Do not dismount any part of the card like modules, front plates or internal cable connections.

Markings and Labelling
The product complies with the current European directives on CE marking. A CE declaration of conformity is available on request.

The product complies with the current European Directives on the Use of Certain Hazardous Substances (RoHS-3) 2015/863/EU).

According to the European directive WEEE (Waste Electrical and Electronic Equipment), the user is obliged to return the product to the system 
for collection, treatment and recycling of waste electronic equipment. Disposal via residual waste is not permitted.

Up-to-date information on notifiable substances according to REACH regulation (EC) No 1907 /2006 can be quoted on request. 



Packing list

(c) Spectrum Instrumentation GmbH 12

Packing list
The following items are containing in the packing. Some of these items need to be ordered separately as an option. 

Table 2: Packing List

Item Contained Description

Card Yes Ordered card type inside ESD safety bag

Star-Hub M5i.xxxx-SH8-C2 Optional Star-Hub mounted on card, containing 2 sync-cables

Star-Hub M5i.xxxx-SH8-C4 Star-Hub mounted on card, containing 4 sync-cables

Star-Hub M5i.xxxx-SH8-C8 Star-Hub mounted on card, containing 8 sync-cables

Manual Yes Printed Installation Manual

USB Stick Yes Containing drivers, software and programming manuals

Cables Optional Ordered cables, each packed in own bag



Introduction Preface

(c) Spectrum Instrumentation GmbH 13

Introduction

Preface
This manual provides detailed information on the hardware features of your Spectrum board. This information includes technical data,
specifications, block diagram and a connector description.

In addition, this guide takes you through the process of installing your board and also describes the installation of the delivered driver package 
for each operating system.

Finally this manual provides you with the complete software information of the board and the related driver. The reader of this manual will 
be able to integrate the board in any PC system with one of the supported bus and operating systems.

Please note that this manual provides no description for specific driver parts such as those for IVI, LabVIEW or MATLAB. These driver manuals 
are available on USB-Stick or on the Spectrum website.

For any new information on the board as well as new available options or memory upgrades please contact our website 
www.spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible 
for any hardware failures resulting from incorrect usage.

 

Overview
The M5i generation is the fastest streaming and high perfor-
mance platform from Spectrum. The cards have been optimized 
for extremely fast data transfer and allow to read data for online 
analysis or offline storage with more than 12.8 GB/s using the 
PCI Express x16 Gen 3 bus interface. 

The card comes with a standard memory of 2 GSamples which can be extended to 8 GSam-
ples. A number of features like clock and trigger input and output and several multi-purpose 
I/O lines allow the integration into different application

 

   

General Information
The M5i.33xx is best suitable for applications that need ultra high sample rates, high resolution as well as a high input bandwidth. The fastest 
models are available with 3.0 GHz bandwidth, slower versions come with 2.0 GHz or 1.0 GHz bandwidth.

On the M5i.33xx every of the up to two channels has its own amplifier. Each input channel can be adapted to a wide variety of signal 
sources. This is done by software selecting a matching input range and input coupling. The user will easily find a matching solution from the 
offered different models. These versions are working with sample rates of 3.2 GS/s up to 10.0 GS/s and have one or two channels and can 
also be updated to a multi-channel system using the internal synchronization bus.

Data is written in the internal 2 GSample large memory which can be enlarged to a total of 8 GSamples. This memory can also be used as 
a FIFO buffer. In FIFO mode data will be transferred online into the PC RAM or to hard disk.

Application examples: Automatic test systems, Supersonics, CCD imaging systems, Vibration analysis, Radar, Sonar.



Introduction Different models of the M5i.33xx series

(c) Spectrum Instrumentation GmbH 14

Different models of the M5i.33xx series
The following overview shows the different available models of the M5i.33xx series. They differ in the number of available channels. You 
can also see the model dependent location of the input connectors.

• M5i.3330-x16
• M5i.3350-x16
• M5i.3360-x16

• M5i.3321-x16
• M5i.3337-x16
• M5i.3357-x16
• M5i.3367-x16
 

 

Image 1: Connector location for 1 channel cards

Image 2: Connector location for 2 channel cards



Introduction Additional options

(c) Spectrum Instrumentation GmbH 15

Additional options

Star-Hub
The Star-Hub module allows the synchroni-
zation of up to 8 M5i cards. It is possible 
to synchronize only cards of the same fam-
ily with each other.

The Star-Hub is mounted on the backside 
of the M5i card and extends the M5i card 
to use a third PCIe bracket and hence re-
quiring enough space for at least half-
length PCI Express card. A free, full length, 
space is recommended for easier access 
to the cables and for enhanced air flow.

The module acts as a star distribution for 
clock and trigger signals. Every board is 
connected to the Star-Hub with a small ca-
ble of the same length; the carrier or mas-
ter card, as well as all slave cards.
That minimizes the clock skew between 
the different cards. The picture shows the 
piggy-back module mounted on the back-
side of the carrier board schematically, 
without any plugged synchronization ca-
bles to achieve a better visibility.

The carrier card acts as the clock master and the same or any other card can be the trigger master. All trigger modes that are available on 
the master card are also available if the synchronization Star-Hub is used.

The cable connection of the slave boards is automatically recognized and checked by the driver when initializing the Star-Hub module. So 
no care must be taken on how to connect the slave cards. The master card must always be connected to its dedicated connector (the very left 
one as shown above). The star-hub module itself is handled as an additional device just like any other card and the programming consists of 
only a few additional commands.

 

 

Image 3: M5i card showing mounted star-hub and the card’s sync bus connector



Introduction The Spectrum type plate

(c) Spectrum Instrumentation GmbH 16

The Spectrum type plate

The Spectrum type plate, which consists of the following components, can be found on all of our boards. Please check whether the printed 
information is the same as the information on your delivery note. All this information can also be read out by software:

The board type, consisting of the two letters describing the bus (in this case M4i for the PCI Express x8 bus) and the model number.

The size of the on-board installed memory in MSample or GSample. In this example there are 2 GS = 2048 MSample
(4 GByte = 4096 MByte) installed.

The serial number of your Spectrum board. Every board has a unique serial number.

A list of the installed options. A complete list of all available options is shown in the order information. In this example no additional 
options are installed.

The base card version, consisting of the printed circuit board (PCB) version, the hardware version and the firmware version.

The version of the analog/digital front-end module, consisting of the printed circuit board (PCB) version, the hardware version and 
the firmware version (if available). If no programmable device is located on the module, the firmware field is left empty.

The date of production, consisting of the calendar week and the year.

The version of the extension module (such as a Starhub) if one is installed, consisting of the printed circuit board (PCB) version, the 
hardware version and the firmware version. If no extension module is installed this part is left empty.

Please always supply us with the above information, especially the serial number in case of support request. That 
allows us to answer your questions as soon as possible. Thank you.

Image 4: M4i card backside showing type plate location and content



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 17

Hardware information

Block Diagrams

M5i.33xx Block Diagram

Image 5: M5i.33xx series block diagram



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 18

Technical Data
Only figures that are given with a maximum reading or with a tolerance reading are guaranteed specifications. All other figures are typical characteristics that are given for 
information purposes only. Figures are valid for products stored for at least 2 hours inside the specified operating temperature range, after a 30 minute warm-up, after run-
ning an on-board calibration and with proper cooled products. All figures have been measured in lab environment with an environmental temperature between 20°C and 
25°C and an altitude of less than 100 m.

Analog Inputs

 

 

Trigger

 

Resolution 12 bit (can be switched by software to 8 bit to reduce data throughput)
Input Range software programmable ±200 mV, ±500 mV, ±1 V, ±2.5 V
Input Type fixed Single-ended
Input Offset (single-ended) software programmable programmable to ±100% of input range in steps of 1%
ADC Differential non linearity (DNL) ADC only ±0.3 LSB
ADC Integral non linearity (INL) ADC only ±2.5 LSB
Offset error (full speed), DC signal after warm-up and calibration < 0.5% of range
Gain error (full speed), DC signal after warm-up and calibration < 0.5% of reading
Crosstalk: Signal 10 MHz, 50  any range, any channel < -110 dB

Crosstalk: Signal 100 MHz, 50  any range, any channel < -103 dB

Analog Input impedance fixed 50 
Analog input coupling fixed DC
Over voltage protection input range ±200 mV 1.4 Vrms (16 dBm),max ±2.0 V peak input voltage
Over voltage protection input range >= ±500 mV 5 Vrms (27 dBm),max ±7.5 V peak input voltage
Anti-Aliasing Filter (standard) fixed at specified bandwidth (see table below)
Channel selection (single-ended inputs) software programmable 1 or 2 channels (maximum is model dependent)
Calibration Internal Self-calibration is done on software command and corrects against the on-board references. Self-

calibration should be issued after warm-up time.
Calibration External External calibration calibrates the on-board references used in self-calibration. All calibration 

constants are stored in non-volatile memory.
A yearly external calibration is recommended.

Input Range M5i.3360-x16
M5i.3367-x16

M5i.3350-x16
M5i.3357-x16

M5i.3330-x16
M5i.3337-x16

M5i.3321-x16

lower bandwidth limit all ranges 0 Hz (DC) 0 Hz (DC) 0 Hz (DC) 0 Hz (DC)
-3 dB bandwidth (minimum) all ranges 4.7 GHz 3.0 GHz 2.0 GHz 1.0 GHz
-3 dB bandwidth (typical) all ranges 4.8 GHz 3.1 GHz 2.2 GHz 1.1 GHz
Flatness within ±0.5 dB all ranges 2.0 GHz 1.8 GHz 1.1 GHz 0.8 GHz

Available trigger modes software programmable Channel Trigger, External, Software, Window, Re-Arm, Or/And, Delay
Channel trigger level resolution 12 bit

Trigger edge software programmable Rising edge, falling edge or both edges
Trigger delay software programmable 0 up to (256 GS - 32) in steps of 32
Trigger holdoff (for Multi) software programmable 0 up to (256 GS - 32) in steps of 32
Multi re-arming time 1 channel mode

2 channel mode
352 samples (+ programmed pretrigger)
176 samples (+ programmed pretrigger)

Pretrigger at Multi, FIFO software programmable 32 up to (32 kSamples / channels) in steps of 32
Posttrigger at Standard Single software programmable 32 up to (256 GS - 32) in steps of 32
Memory depth software programmable 64 up to (Installed memory / channels) in steps of 32
Multiple Recording segment size software programmable 64 up to (Installed memory / channels) in steps of 32
Internal/External trigger accuracy 1 sample

Timestamp modes software programmable Standard, Startreset, external reference clock (e.g. PPS from GPS, IRIG-B)
Data format Std., Startreset: 64 bit counter, increments with sample clock (reset manually or on start)

RefClock: 24 bit upper counter (increment with RefClock)
40 bit lower counter (increments with sample clock, reset with RefClock)

Extra data software programmable none, acquisition of X0/X1/X2/X3 inputs at trigger time, trigger source (for OR trigger)
Size per stamp 128 bit = 16 bytes

External trigger Ext X0, X1, X2, X3
External trigger type single level comparator 3.3V LVTTL logic inputs
External trigger impedance software programmable 50 or 3k  For electrical specifications refer to

„Multi Purpose I/O lines“ section.External trigger input level ±5 V
External trigger over voltage protection 50 termination

3k termination
±20 V
7 Vrms

External trigger sensitivity (minimum required signal swing) 200 mVpp
External trigger level software programmable ±5 V with a stepsize of 10 mV
External trigger bandwidth 50 

3 k
10 k

DC to 2 GHz
DC to 750 MHz
n.a.

DC to 125 MHz
n.a.
DC to 125 MHz

Minimum external trigger pulse width 2 samples 2 samples
Resulting max detectable trigger frequency [Current Samplerate]/2 [Current Samplerate]/2



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 19

Multi Purpose I/O lines (front-plate)

  

Option M5i.xxxx-PulseGen

 

Clock

 

Block Average Signal Processing Option M5i.33xx

  

Number of multi purpose lines four, named X0, X1, X2, X3
Input: available signal types software programmable Logic Trigger, Asynchronous Digital-In, Synchronous Digital-In, Timestamp Reference Clock
Input: impedance software programmable 10 kto 3.3 V or 50 to GND
Input: maximum voltage level -0.5 V to +4.0 V
Input: signal levels 3.3 V LVTTL (Low ≤ 0.8 V, High ≥ 2.0 V)
Input: bandwith 125 MHz
Output: available signal types software programmable Asynchronous Digital-Out, Trigger Output, Run, Arm, System Clock
Output: impedance 50 
Output: signal levels 3.3 V LVTTL
Output: type 3.3V LVTTL, TTL compatible for high impedance loads
Output: drive strength Capable of driving 50 loads, maximum drive strength ±48 mA
Output: internal update rate M5i.33xx Current sampling clock < 3.2 GS/s : 1/4 of sampling clock

Current sampling clock > 3.2 GS/s and < 6.4 GS/s : 1/8 of sampling clock
Output: min high/low time 4 ns
Output: max signal frequency 125 MHz

Number of internal pulse generators 4
Number of pulse generator output lines 4 (Existing multi-purpose outputs X0 to X3)
Time resolution of pulse generator Pulse generator’s sampling rate is derived from instrument’s sampling rate and value can be read 

out. Maximum possible pulse generator update rate is
33xx: 312.5 MS/s (3.2 ns)

Programmable output modes Single-shot, multiple repetitions on trigger, gated
Programmable trigger sources Software, Card Trigger, Other Pulse Generator, XIO lines.
Programmable trigger gate None, ARM state, RUN state
Programmable length (frequency) 2 to 4G samples in steps of 1 (32 bit)
Programmable width (duty cycle) 1 to 4G samples in steps of 1 (32 bit)
Programmable delay 0 to 4G samples in steps of 1 (32 bit)
Programmable loops 0 to 4G samples in steps of 1 (32 bit) - 0 = infinite
Output level of digital pulse generators Please see section of multi-purpose I/O lines

Clock Modes software programmable internal PLL, external reference clock, star-hub synchronization clock
Internal clock accuracy ±1 ppm
Clock setup range base frequency or divided base frequency
Clock setup base frequencies M5i.3321

M5i.333x
M5i.335x/M5i.336x

3.2 GS/s, 2.5 GS/s, 2.0 GS/s
6.4 GS/s, 5.0 GS/s, 4.0 GS/s
10.0 GS/s, 8.0 GS/s, 5.0 GS/s

Clock setup divider power of 2: 2, 4, 8, 16, 32, ... , 524288, 1048576
Clock setup examples

M5i.332x
M5i.333x
M5i.335x/M5i.336x

Combination of any base frequency with any divider:
3.2, 2.5, 2.0, 1.6, 1.25, 1.0, 0.8 GS/s, ..., 1 kS/s
6.4, 5.0, 4.0, 3.2, 2.5, 2.0, 1.6. 1.25, 1.0, 0.8 GS/s, ..., 1 kS/s
10.0, 8.0, 6.4, 5.0, 4.0, 3.2, 2.5, 2.0, 1.6, 1.25, 1.0 GS/s, ..., 1 kS/s

External reference clock range software programmable  2 MHz and  750 MHz in steps of 2 MHz
External reference clock input impedance 50  fixed
External reference clock input coupling AC coupling
External reference clock input edge Rising edge
External reference clock input type Single-ended, sine wave or square wave
External reference clock input swing min

max
200 mVpp
3 Vpp

External reference clock input max DC voltage ±10 V (with max 3.0 V difference between low and high level)
External reference clock input duty cycle requirement 45% to 55%
Clock setup granularity when using reference clock divider: maximum sampling rate divided by: TBD
Internal reference clock output type Single-ended, AC-coupled, LVPECL, 720 mVpp (typ)
Internal reference clock output frequency M5i.3321

M5i.333x/335x/336x
clock setup base frequency / 64 (example: clock 3.2 GS/s -> output 50.000 MHz)
clock setup base frequency / 128 (example: clock 4.0 GS/s -> output 31.25 MHz)

Star-Hub synchronization clock modes software programmable Internal clock, External reference clock
Channel to channel skew on one card <12 ps
Skew between star-hub synchronized cards software programmable skew adjustable up to 200 ps (10 GS/s models) or 312 ps (6.4 GS/s and 3.2 GS/s models)

Averaging/Accumulation Modes Software programmable Standard or threshold defined averaging (TDA) for 
positive or negative pulses

Minimum Waveform Length 64 samples
Minimum Waveform Stepsize 32 samples
Maximum Waveform Length 1 channel active 1 MSamples
Maximum Waveform Length 2 channels active 512 kSamples
Minimum Number of Averages 2
Maximum Number of Averages 1024 (1k)

Data Output Format fixed 32 bit signed integer
Re-Arming Time between waveforms 1 channel mode 352 samples (+ programmed pretrigger)

2 channel mode 176 samples (+ programmed pretrigger)
Re-Arming Time between end of average to start of 
next average

Two times the programmed segment length’s (L) 
acquisition time:
t = 2 * SegmentLen * ActiveChannels / Samplerate



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 20

Connectors

Connection Cycles

 

Environmental and Physical Details

 

PCI Express specific details

 

Certification, Compliance, Warranty

  

Power Consumption

MTBF

 

Analog Inputs (one for each single-ended input) SMA female Cable-Type: Cab-3mA-xx-xx
Trigger Input SMA female Cable-Type: Cab-3mA-xx-xx
Clock Input SMA female Cable-Type: Cab-3mA-xx-xx
Clock Output SMA female Cable-Type: Cab-3mA-xx-xx
Multi Purpose I/O SMA female Cable-Type: Cab-3mA-xx-xx
Power Connector PCIe 6-pin power +12V+GND Must be supplied by PC power supply

All connectors have an expected lifetime as specified below. Please avoid to exceed the specified connection cycles or use connector savers.
SMA connector 500 connection cycles
PCIe connector 50 connection cycles
PCIe power connector 30 connection cycles

Dimension (Card, including rear fans) L x H x W: 241 mm x 107 mm x 40 mm (double slot width)
Dimension (Card, rear fans, option star-hub) L x H x W: 241 mm x 107 mm x 60 mm (three slots width)
Weight (M5i.33xx series) maximum 780 g
Weight (Option Star-hub, including 8 cables) maximum 150 g
Warm up time 30 minutes (running acquisition at full speed)
Operating temperature 0°C to 50°C
Storage temperature -10°C to 70°C
Humidity 10% to 90% 
Dimension of packing 1 card 470 mm x 250 mm x 130 cm
Volume weight of packing 1 card 4 kg

PCIe connector type x16 Generation 3 (Gen3)
PCIe slot compatibility (physical) x16
PCIe slot compatibility (electrical) x1, x2, x4, x8, x16 with PCIe Gen1, Gen2, Gen3, Gen4 or Gen5
Sustained streaming mode (Card-to-System): > 12.8 GB/s (measured on PCIe x16 Gen3 with a chipset supporting a 512 bytes TLP)

> 11.2 GB/s (measured on PCIe x16 Gen3 with a chipset supporting a 256 bytes TLP)
PCIe max card controller TLP 512 (lower values will limit maximum streaming speed)

Conformity Declaration EN 17050-1:2010 General Requirements
EU Directives 2014/30/EU

2014/35/EU
2011/65/EU
2006/1907/EC
2012/19/EU

EMC - Electromagnetic Compatibility
LVD - Electrical equipment designed for use within certain voltage limits
RoHS - Restriction of the use of certain hazardous substances in electrical and electronic equipment
REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals
WEEE - Waste from Electrical and Electronic Equipment

Compliance Standards EN 61010-1: 2010
EN 61187:1994
EN 61326-1:2021
EN 61326-2-1:2021

EN IEC 63000:2018

Safety regulations for electrical measuring, control, regulating and laboratory devices - Part 1: General requirement
Electrical and electronic measuring equipment - Documentation
Electrical equipment for measurement, control and laboratory use
EMC requirements - Part 1: General requirements
EMC requirements - Part 2-1: Particular requirements - Test configurations, operational conditions and performance cri-
teria for sensitive test and measurement equipment for EMC unprotected applications
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of haz-
ardous substances

Product warranty 5 years starting with the day of delivery
Software and firmware updates Life-time, free of charge

Bus Connector Power Connector*
3.3V 12 V 12 V Total

M5i.3357-x16/M5i.3367-x16 0.3 A n.a. 3.2 A 39 W
M5i.3350-x16/M5i.3360-x16 0.3 A n.a. 3.0 A 37 W
M5i.3337-x16 0.3 A n.a. 3.0 A 37 W
M5i.3330-x16 0.3 A n.a. 2.8 A 35 W
M5i.3321-x16 0.3 A n.a. 3.0 A 37 W
*A separate power connection to the card is mandatory. The card cannot be powered solely by the PCIe bus connector

MTBF TBD hours



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 21

Frequency Response Plots

Frequency Response M5i.3360-x16, M5i.3367-x16
Sampling Rate: 10 GS/s, Bandwidth 4.7 GHz
50 , DC coupling, no offset, no external filter

Frequency Response M5i.3350-x16, M5i.3357-x16
Sampling Rate: 10 GS/s, Bandwidth 3.0 GHz
50 , DC coupling, no offset, no external filter

Frequency Response M5i.3330-x16, M5i.3337-x16
Sampling Rate: 6.4 GS/s, Bandwidth 2.0 GHz
50 , DC coupling, no offset, no external filter



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 22

Frequency Response M5i.3321-x16 Standard
Sampling Rate: 3.2 GS/s, Bandwidth 1.0 GHz
50 , DC coupling, no offset, no external filter
Standard Filter

Frequency Response M5i.3321-x16 with option -inptd
Sampling Rate: 3.2 GS/s, Bandwidth 1.0 GHz
50 , DC coupling, no offset, no external filter
Option -inptd (input time domain optimization) Filter



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 23

Dynamic Parameters 10.0 GS/s 4.7 GHz models

Dynamic Parameters 10.0 GS/s 3.0 GHz models

Dynamic Parameters 6.4 GS/s models

M5i.3360-x16 and M5i.3367-x16 - 12 Bit 10 GS/s (channel 0)
Input Range ±200 mV ±500 mV
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 50.9 dB 50.3 dB 50.6 dB 50.0 dB 50.4 dB 50.9 dB 51.8 dB 51.5 dB 51.2 dB 50.9 dB 51.4 dB 50.8 dB

THD (typ) -65.9 dB -67.4 dB -69.6 dB -60.0 dB -53.7 dB -57.4 dB -70.6 dB -69.1 dB -65.5 dB -61.4 dB -58.8 dB -57.8 dB

SFDR (typ), incl. harm. 59.7 dB 57.6 dB 59.6 dB 58.1 dB 55.1 dB 57.9 dB 61.2 dB 59.3 dB 58.8 dB 58.2 dB 60.5 dB 58.4 dB

SFDR (typ), excl. harm. 59.7 dB 57.6 dB 59.6 dB 58.1 dB 60.7 dB 61.4 dB 61.2 dB 59.3 dB 58.8 dB 58.2 dB 63.9 dB 60.1 dB

SINAD/THD+N (typ) 50.8 dB 50.3 dB 50.6 dB 49.6 dB 48.7 dB 50.0 dB 51.7 dB 51.4 dB 51.1 dB 50.6 dB 50.7 dB 50.0 dB

ENOB (SINAD) 8.2 LSB 8.1 LSB 8.1 LSB 8.0 LSB 7.8 LSB 8.0 LSB 8.3 LSB 8.2 LSB 8.2 LSB 8.1 LSB 8.1 LSB 8.0 LSB

ENOB (SNR) 8.2 LSB 8.1 LSB 8.1 LSB 8.0 LSB 8.1 LSB 8.2 LSB 8.3 LSB 8.3 LSB 8.2 LSB 8.1 LSB 8.2 LSB 8.1 LSB

M5i.3360-x16 and M5i.3367-x16 - 12 Bit 10 GS/s (channel 0)
Input Range ±1 V ±2.5 V
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 51.3 dB 51.4 dB 51.3 dB 51.0 dB 51.3 dB 50.9 dB 51.3 dB 51.4 dB 51.3 dB 51.0 dB 51.3 dB 50.9 dB

THD (typ) -70.0 dB -67.3 dB -68.9 dB -61.1 dB -58.3 dB -57.4 dB -70.0 dB -67.3 dB -68.9 dB -61.1 dB -58.3 dB -57.4 dB

SFDR (typ), incl. harm. 59.4 dB 60.4 dB 58.9 dB 58.9 dB 59.1 dB 57.9 dB 59.4 dB 60.4 dB 58.9 dB 58.9 dB 59.1 dB 57.9 dB

SFDR (typ), excl. harm. 59.4 dB 60.4 dB 58.9 dB 58.9 dB 62.3 dB 61.4 dB 59.4 dB 60.4 dB 58.9 dB 58.9 dB 62.3 dB 61.4 dB

SINAD/THD+N (typ) 51.3 dB 51.3 dB 51.1 dB 50.6 dB 50.6 dB 50.1 dB 51.3 dB 51.3 dB 51.1 dB 50.6 dB 50.6 dB 50.1 dB

ENOB (SINAD) 8.2 LSB 8.2 LSB 8.2 dB 8.1 LSB 8.1 LSB 8.0 LSB 8.2 LSB 8.2 LSB 8.2 dB 8.1 LSB 8.1 LSB 8.0 LSB

ENOB (SNR) 8.2 LSB 8.2 LSB 8.2 dB 8.2 LSB 8.2 LSB 8.2 LSB 8.2 LSB 8.2 LSB 8.2 dB 8.2 LSB 8.2 LSB 8.2 LSB

M5i.3350-x16 and M5i.3357-x16 - 12 Bit 10 GS/s (channel 0)
Input Range ±200 mV ±500 mV
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 51.5 dB 52.0 dB 51.3 dB 51.0 dB 50.9 dB 50.8 dB 52.0 dB 52.0 dB 51.2 dB 52.3 dB 51.5 dB 51.3 dB

THD (typ) -66.8 dB -65.3 dB -65.2 dB -65.4 dB -55.7 dB -54.8 dB -65.5 dB -63.1 dB -65.9 dB -65.2 dB -58.6 dB -58.8 dB

SFDR (typ), incl. harm. 56.0 dB 55.7 dB 54.6 dB 54.8 dB 55.6 dB 55.0 dB 55.7 dB 64.7 dB 54.3 dB 58.9 dB 59.6 dB 52.5 dB

SFDR (typ), excl. harm. 56.0 dB 55.7 dB 54.6 dB 54.8 dB 55.6 dB 55.6 dB 55.7 dB 67.0 dB 54.3 dB 58.9 dB 59.6 dB 52.5 dB

SINAD/THD+N (typ) 51.3 dB 51.8 dB 51.2 dB 50.9 dB 49.6 dB 49.4 dB 51.8 dB 51.9 dB 51.1 dB 52.2 dB 50.7 dB 49.2 dB

ENOB (SINAD) 8.2 LSB 8.3 LSB 8.2 LSB 8.2 LSB 8.0 LSB 7.9 LSB 8.3 LSB 8.3 LSB 8.2 LSB 8.4 LSB 8.1 LSB 7.9 LSB

ENOB (SNR) 8.3 LSB 8.3 LSB 8.2 LSB 8.2 LSB 8.2 LSB 8.0 LSB 8.3 LSB 8.3 LSB 8.2 LSB 8.4 LSB 8.2 LSB 8.2 LSB

M5i.3350-x16 and M5i.3357-x16 - 12 Bit 10 GS/s (channel 0)
Input Range ±1 V ±2.5 V
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 51.7 dB 52.0 dB 51.7 dB 51.6 dB 51.2 dB 51.2 dB 52.0 dB 52.0 dB 51.2 dB 52.3 dB 51.5 dB 51.0 dB

THD (typ) -66.4 dB -66.5 dB -66.5 dB -64.7 dB -58.5 dB -60.5 dB -65.5 dB -63.1 dB -65.9 dB -65.2 dB -58.6 dB -64.4 dB

SFDR (typ), incl. harm. 55.8 dB 63.6 dB 55.9 dB 54.9 dB 59.5 dB 57.7 dB 55.7 dB 64.7 dB 54.3 dB 58.9 dB 59.6 dB 60.4 dB

SFDR (typ), excl. harm. 55.8 dB 63.7 dB 55.9 dB 54.9 dB 60.0 dB 57.7 dB 55.7 dB 67.0 dB 54.3 dB 58.9 dB 59.6 dB 60.4 dB

SINAD/THD+N (typ) 51.6 dB 51.9 dB 51.7 dB 51.5 dB 50.5 dB 51.2 dB 51.8 dB 51.9 dB 51.1 dB 52.2 dB 50.7 dB 50.9 dB

ENOB (SINAD) 8.3 LSB 8.3 LSB 8.3 dB 8.3 LSB 8.1 LSB 8.2 LSB 8.3 LSB 8.3 LSB 8.2 LSB 8.4 LSB 8.1 LSB 8.1 LSB

ENOB (SNR) 8.3 LSB 8.3 LSB 8.3 dB 8.3 LSB 8.2 LSB 8.2 LSB 8.3 LSB 8.3 LSB 8.2 LSB 8.4 LSB 8.2 LSB 8.2 LSB

M5i.3330-x16 and M5i.3337-x16 - 12 Bit 6.4 GS/s (channel 0)
Input Range ±200 mV ±500 mV
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 53.1 dB 53.1 dB 53.0 dB 52.6 dB 51.9 dB 50.1 dB 53.8 dB 53.2 dB 53.4 dB 53.0 dB 52.4 dB 50.3 dB

THD (typ) -63.8 dB -63.8 dB -62.0 dB -62.3 dB -56.9 dB -56.7 dB -61.6 dB -62.1 dB -61.6 dB -61.6 dB -59.8 dB -59.8 dB

SFDR (typ), incl. harm. 62.0 dB 61.6 dB 62.4 dB 62.5 dB 59.7 dB 57.2 dB 62.5 dB 64.2 dB 60.7 dB 62.2 dB 58.1 dB 60.0 dB

SFDR (typ), excl. harm. 62.0 dB 61.6 dB 62.6 dB 62.6 dB 64.5 dB 58.7 dB 65.0 dB 66.3 dB 60.6 dB 65.1 dB 58.1 dB 60.1 dB

SINAD/THD+N (typ) 52.8 dB 52.6 dB 52.3 dB 52.5 dB 51.6 dB 49.6 dB 53.4 dB 53.6 dB 52.8 dB 53.0 dB 51.9 dB 50.0 dB

ENOB (SINAD) 8.5 LSB 8.5 LSB 8.4 LSB 8.4 LSB 8.3 LSB 8.0 LSB 8.6 LSB 8.6 LSB 8.5 LSB 8.6 LSB 8.3 LSB 8.0 LSB

ENOB (SNR) 8.5 LSB 8.6 LSB 8.6 LSB 8.5 LSB 8.3 LSB 8.0 LSB 8.7 LSB 8.6 LSB 8.6 LSB 8.6 LSB 8.5 LSB 8.0 LSB

M5i.3330-x16 and M5i.3337-x16 - 12 Bit 6.4 GS/s (channel 0)
Input Range ±1 V ±2.5 V
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 53.4 dB 53.6 dB 53.3 dB 53.4 dB 52.5 dB 50.3 dB 53.5 dB 52.9 dB 53.5 dB 53.4 dB 51.9 dB 52.3 dB

THD (typ) -63.8 dB -63.5 dB -63.5 dB -62.6 dB -59.9 dB -59,7 dB -64.0 dB -61.0 dB -61.2 dB -60.9 dB -58.9 dB -59.5 dB

SFDR (typ), incl. harm. 62.0 dB 63.3 dB 65.1 dB 58.1 dB 60.4 dB 53.0 dB 62.2 dB 60.9 dB 63.6 dB 62.2 dB 58.7 dB 58.8 dB

SFDR (typ), excl. harm. 62.0 dB 63.4 dB 66.3 dB 58.1 dB 60.8 dB 53.0 dB 62.2 dB 53.9 dB 63.5 dB 63.0 dB 59.4 dB 58.9 dB

SINAD/THD+N (typ) 53.0 dB 53.2 dB 53.1 dB 52.6 dB 51.8 dB 49.6 dB 53.1 dB 52.9 dB 53.1 dB 52.9 dB 51.6 dB 51.5 dB

ENOB (SINAD) 8.5 LSB 8.5 LSB 8.6 LSB 8.4 LSB 8.3 LSB 8.0 LSB 8.5 LSB 8.5 LSB 8.6 LSB 8.5 LSB 8.3 LSB 8.3 LSB

ENOB (SNR) 8.6 LSB 8.6 LSB 8.6 LSB 8.6 LSB 8.5 LSB 8.1 LSB 8.6 LSB 8.6 LSB 8.6 LSB 8.6 LSB 8.3 LSB 8.4 LSB



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 24

Dynamic Parameters 3.2 GS/s models 

Dynamic Parameters 10.0 GS/s 4.7 GHz models (8-bit Mode)

The below dynamic parameters are measured using the 8-bit mode which reduces the resolution in hardware from 12 bit to 8 bit to save 
memory and data transfer bandwidth. Due to the hardware resolution being below the ENOB of all models, the dynamic parameters are 
similar for all models when switched to the 8-bit mode.

  

Dynamic parameters are measured at ±1 V input range (if no other range is stated) and 50 termination with the samplerate specified in the table. Measured parameters are averaged 
20 times to get typical values. Test signal is a pure sine wave generated by a signal generator and a matching bandpass filter. Amplitude is >99% of FSR. SNR and RMS noise parameters 
may differ depending on the quality of the used PC. SNR = Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Dis-
tortion, ENOB = Effective Number of Bits.
  

M5i.3321-x16 - 12 Bit 3.2 GS/s
Input Range ±200 mV ±500 mV
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz
SNR (typ) 54.1 dB 54.4 dB 54.7 dB 54.5 dB 54.5 dB 54.8 dB 55.0 dB 54.8 dB 54.6 dB 54.9 dB

THD (typ) -64.3 dB -63.4 dB -62.3 dB -61.1 dB -59.5 dsB -61.5 dB -62.0 dB -66.5 dB -61.7 dB -57.5 dB

SFDR (typ), incl. harm. 64.7 dB 65.4 dB 63.5 dB 61.9 dB 61.8 dB 72.9 dB 64.9 dB 65.6 dB 62.1 dB 60.3 dB

SFDR (typ), excl. harm. 65.1 dB 73.8 dB 71.6 dB 72.5 dB 69.7 dB 65.6 dB 72.8 dB 65.8 dB 69.1 dN 67.7 dB

SINAD/THD+N (typ) 53.7 dB 53.9 dB 54.0 dB 53.6 dB 53.3 dB 54.0 dB 54.2 dB 54.6 dB 53.9 dB 52.9 dB

ENOB (SINAD) 8.6 LSB 8.7 LSB 8.7 LSB 8.5 LSB 8.6 LSB 8.7 LSB 8.7 LSB 8.8 LSB 8.7 LSB 8.5 LSB

ENOB (SNR) 8.7 LSB 8.7 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.8 LSB

M5i.3321-x16 - 12 Bit 3.2 GS/s
Input Range ±1 V ±2.5 V
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz
SNR (typ) 55.3 dB 55.3 dB 54.8 dB 54.8 dB 54.9 dB 54.8 dB 55.3 dB 54.8 dB 54.8 dB 54.9 dB

THD (typ) -63.8 dB -63.8 dB -59.5 dB -62.5 dB -57.8 dB -63.4 dB -63.8 dB -59.5 dB -62.5 dB -57.8 dB

SFDR (typ), incl. harm. 64.5 dB 66.3 dB 60.7 dB 63.5 dB 60.4 dB 62.5 dB 66.3 dB 60.7 dB 63.5 dB 60.4 dB

SFDR (typ), excl. harm. 65.3 dB 73.2 dB 67.4 dB 71.0 dB 68.9 dB 62.7 dB 73.2 dB 67.4 dB 71.0 dB 68.9 dB

SINAD/THD+N (typ) 54.2 dB 54.8 dB 53.6 dB 54.1 dB 53.1 dB 54.2 dB 54.8 dB 53.6 dB 54.1 dB 53.1 dB

ENOB (SINAD) 8.7 LSB 8.8 LSB 8.6 LSB 8.7 LSB 8.5 LSB 8.7 LSB 8.8 LSB 8.6 LSB 8.7 LSB 8.5 LSB

ENOB (SNR) 8.9 LSB 8.9 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.8 LSB 8.9 LSB 8.8 LSB 8.8 LSB 8.8 LSB

M5i.3360-x16 and M5i.3367-x16 - 8 Bit 10 GS/s (channel 0)
Input Range ±200 mV ±500 mV
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 46.8 dB 46.7 dB 46.6 dB 46.5 dB 46.5 dB 46.3 dB 46.8 dB 47.0 dB 46.8 dB 46.8 dB 46.9 dB 46.7 dB

THD (typ) -65.2 dB -66.1 dB -67.0 dB -60.6 dB -54.3 dB -54.0 dB -65.4 dB -66.2 dB -65.3 dB -60.6 dB -58.9 dB -56.7 dB

SFDR (typ), incl. harm. 55.3 dB 54.0 dB 55.2 dB 56.8 dB 55.6 dB 55.0 dB 56.1 dB 57.0 dB 53.5 dB 54.3 dB 56.2 dB 56.7 dB

SFDR (typ), excl. harm. 55.3 dB 54.0 dB 55.2 dB 56.8 dB 55.6 dB 56.4 dB 56.1 dB 57.0 dB 53.5 dB 55.3 dB 56.2 dB 56.7 dB

SINAD/THD+N (typ) 46.8 dB 46.7 dB 46.6 dB 46.3 dB 46.0 dB 45.7 dB 46.9 dB 47.0 dB 46.7 dB 46.7 dB 46.7 dB 46.5 dB

ENOB (SINAD) 7.5 LSB 7.5 LSB 7.5 LSB 7.4 LSB 7.4 LSB 7.3 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.4 LSB

ENOB (SNR) 7.5 LSB 7.5 LSB 7.5 LSB 7.4 LSB 7.4 LSB 7.4 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB

M5i.3360-x16 and M5i.3367-x16 - 8 Bit 10 GS/s (channel 0)
Input Range ±1 V ±2.5 V
Test signal frequency 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz 10 MHz 40 MHz 70 MHz 240 MHz 600 MHz 1.2 GHz
SNR (typ) 47.0 dB 46.9 dB 46.9 dB 46.8 dB 46.9 dB 46.7 dB 46.8 dB 47.0 dB 46.8 dB 46.8 dB 46.9 dB 46.7 dB

THD (typ) -65.6 dB -65.8 dB -66.5 dB -61.9 dB -58.9 dB -57.9 dB -65.4 dB -66.2 dB -65.3 dB -60.6 dB -58.9 dB -56.7 dB

SFDR (typ), incl. harm. 56.1 dB 55.2 dB 55.2 dB 55.9 dB 54.7 dB 56.2 dB 56.1 dB 57.0 dB 53.5 dB 54.3 dB 56.2 dB 56.7 dB

SFDR (typ), excl. harm. 56.1 dB 55.2 dB 55.2 dB 55.9 dB 54.7 dB 56.2 dB 56.1 dB 57.0 dB 53.5 dB 55.3 dB 56.2 dB 56.7 dB

SINAD/THD+N (typ) 47.0 dB 46.9 dB 46.9 dB 46.7 dB 46.7 dB 46.5 dB 46.9 dB 47.0 dB 46.7 dB 46.7 dB 46.7 dB 46.5 dB

ENOB (SINAD) 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.4 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.4 LSB

ENOB (SNR) 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB 7.5 LSB



Introduction Hardware information

(c) Spectrum Instrumentation GmbH 25

RMS Noise Level (Zero Noise)

Standard Mode (12 Bit Resolution)

8-Bit acquisition mode (resolution reduced to 8 bit in hardware)

  

M5i.3360-x16 and M5i.3367-x16 - 12 Bit 10 GS/s (Channel 0)
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 3.9 LSB 381 uV 3.8 LSB 928 uV 4.3 LSB 2,1 mV 4.3 LSB 5.3 mV

M5i.3360-x16 and M5i.3367-x16 - 12 Bit 5 GS/s
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 4.1 LSB 398 uV 3.4 LSB 830 uV 3.6 LSB 1.8 mV 3.4 LSB 4.1 mV

M5i.3350-x16 and M5i.3357-x16 - 12 Bit 10 GS/s (Channel 0)
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 3.9 LSB 381 uV 3.8 LSB 928 uV 4.3 LSB 2,1 mV 4.3 LSB 5.3 mV

M5i.3350-x16 and M5i.3357-x16 - 12 Bit 5 GS/s
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 4.0 LSB 391 uV 3.3 LSB 806 uV 3.6 LSB 1.8 mV 2.9 LSB 3.5 mV

M5i.3330-x16 and M5i.3337-x16 - 12 Bit 6.4 GS/s (Channel 0)
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 3.7 LSB 361 uV 3.0 LSB 732 uV 3.8 LSB 1.9 mV 3.5 LSB 4.3 mV

M5i.3330-x16 and M5i.3337-x16 - 12 Bit 3.2 GS/s
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 3.0 LSB 293 uV 2.8 LSB 684 uV 3.0 LSB 1.5 mV 2.7 LSB 3.3 mV

M5i.3321-x16 - 12 Bit 3.2 GS/s
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 97 uV 244 uV 488 uV 1.22 mV

DC, fixed 50 typical 2.8 LSB 273 uV 2.3 LSB 562 uV 2.3 LSB 1.1 mV 2.9 LSB 3.5 mV

M5i.3360-x16 and M5i.3367-x16 - 8 Bit 10 GS/s (Channel 0)
Input Range ±200 mV ±500 mV ±1 ±2.5 V
Voltage resolution (1 LSB) 1.56 mV 3.9 mV 7.8 mV 19.5 mV

DC, fixed 50 typical 0.5 LSB 780 uV 0.5 LSB 1.95 mV 0.5 LSB 3.9 mV 0.5 LSB 9.8 mV



Introduction M5i.33xx Order Information

(c) Spectrum Instrumentation GmbH 26

M5i.33xx Order Information
The card is delivered with 2 GSample on-board memory and supports standard acquisition (Scope), FIFO acquisition (streaming), Multiple 
Recording and Timestamps. Operating system drivers for Windows/Linux 32 bit and 64 bit, examples for 
C/C++, LabVIEW (Windows), MATLAB (Windows and Linux), IVI, .NET, Delphi, Java, Python, Julia and a Base license of the oscilloscope 
software SBench 6 are included.

Adapter cables are not included. Please order separately!

 

  

 

 

  

(1) : Just one of the options can be installed on a card at a time.
(2) : Third party product with warranty differing from our export conditions. No volume rebate possible.
  

PCI Express x16 Order no. Bandwidth Standard mem 1 channel 2 channels

M5i.3321-x16 1 GHz 2 GSamples 3.2 GS/s 3.2 GS/s
M5i.3330-x16 2 GHz 2 GSamples 6.4 GS/s
M5i.3337-x16 2 GHz 2 GSamples 6.4 GS/s 3.2 GS/s
M5i.3350-x16 3 GHz 2 GSamples 10.0 GS/s
M5i.3357-x16 3 GHz 2 GSamples 10.0 GS/s 5.0 GS/s
M5i.3360-x16 4.7 GHz 2 GSamples 10.0 GS/s
M5i.3367-x16 4.7 GHz 2 GSamples 10.0 GS/s 5.0 GS/s

Options Order no. Option

M5i.xxxx-MEM8GS Optional memory extension to 8 GSamples (16 GBytes)
M5i.3321-inptd M5i.3321-x16 input stage optimized for time domain measurments with smooth step response.
M5i.xxxx-SH8-C2 Synchronization star-hub for up to 8 cards in one system, 2 synchronization cables included
M5i.xxxx-SH8-C4 Synchronization star-hub for up to 8 cards in one system, 4 synchronization cables included
M5i.xxxx-SH8-C8 Synchronization star-hub for up to 8 cards in one system, 8 synchronization cables included
Card-Upgrade Upgrade for M5i.xxxx: Later installation of star-hub or inptd
M5i.xxxx-SyncCable Additional synchronization cable for connecting star-hub to one card

Firmware Options Order no. Option

M5i.xxxx--spavg Signal Processing Firmware Option: Block Average with TDA (later firmware-upgrade available)
M5i.xxxx-PulseGen Firmware Option: adds 4 freely programmable digital pulse generators that use the XIO lines for out-

put (later installation by firmware-upgrade available)

Services Order no.

Recal Recalibration at Spectrum incl. calibration protocol

Standard Cables Order no.

for Connections Length to BNC male to BNC female to SMA male to SMA female to SMB female
Analog/Clk/Trig/XIO 80 cm Cab-3mA-9m-80 Cab-3mA-9f-80 Cab-3mA-3mA-80 Cab-3f-3mA-80
Analog/Clk/Trig/XIO 200 cm Cab-3mA-9m-200 Cab-3mA-9f-200 Cab-3mA-3mA-200 Cab-3f-3mA-200
Probes (short) 5 cm Cab-3mA-9f-5
Information The standard adapter cables are based on RG174 cables and have a nominal attenuation of 0.3 dB/m at 100 MHz and 

0.5 dB/m at 250 MHz. For high speed signals we recommend the low loss cables series CHF

Low Loss Cables Order No. Option
CHF-3mA-3mA-200 Low loss cables SMA male to SMA male 200 cm
CHF-3mA-9m-200 Low loss cables SMA male to BNC male 200 cm
Information The low loss adapter cables are based on MF141 cables and have an attenuation of 0.3 dB/m at 500 MHz and 

0.5 dB/m at 1.5 GHz. They are recommended for signal frequencies of 200 MHz and above.

Amplifiers Order no. Bandwidth Connection Input Impedance Coupling Amplification

SPA.1841 (2) 2 GHz SMA 50 Ohm AC x100 (40 dB)

SPA.1801 (2) 2 GHz SMA 50 Ohm AC x10 (20 dB)

SPA.1601 (2) 500 MHz BNC 50 Ohm DC x10 (20 dB)
Information External Amplifiers with one channel, BNC/SMA female connections on input and output, manually adjustable offset, man-

ually switchable settings. An external power supply for 100 to 240 VAC is included. Please be sure to order an adapter 
cable matching the amplifier connector type and matching the connector type for your A/D card input. 

Software SBench6 Order no.

SBench6 Base version included in delivery. Supports standard mode for one card.
SBench6-Pro Professional version for one card: FIFO mode, export/import, calculation functions
SBench6-Multi Option multiple cards: Needs SBench6-Pro. Handles multiple synchronized cards in one system.
Volume Licenses Please ask Spectrum for details.

Software Options Order no.

SPc-RServer Remote Server Software Package - LAN remote access for M2i/M3i/M4i/M4x/M2p/M5i cards
SPc-SCAPP Spectrum’s CUDA Access for Parallel Processing - SDK for direct data transfer between Spectrum card 

and CUDA GPU. Includes RDMA activation and examples. 



Hardware Installation ESD Precautions

(c) Spectrum Instrumentation GmbH 27

Hardware Installation

ESD Precautions
All Spectrum boards contain electronic components that can be damaged by electrostatic discharge (ESD).

Before installing the board in your system or protective conductive packaging, discharge yourself by touching 
a grounded bare metal surface or approved anti-static mat before picking up this ESD sensitive product.

Sources of noise
Noise sensitive analog devices, such as analog acquisition and generator boards should be placed physically as far away from any noise 
producing source (like e.g. the power supply) as possible. It should especially be avoided to place the board in the slot directly adjacent to 
another fast board like e.g. a graphics controller.

Cooling Precautions
The boards of the M5i.xxxx-x16 series operate with components having very high power consumption at high speeds. For this reason it is 
absolutely required to cool the boards sufficiently.

For all M5i cards it is absolutely mandatory to have cooling fans installed in the chassis that exhaust the heat 
dissipation of the PC components.

• Make absolutely sure, that the on-board fans on the rear of the M5i card are not blocked by PC internal cabling or any other means.
• Make absolutely sure that the fan outlets on the front panel are all open and are not blocked by any outside obstacles.
• Ensure that there is plenty of space around the PC chassis fan’s intake and exhaust vents, both inside and outside the chassis.
• If your chassis includes fan filters, make sure that these are regularly cleaned.
• Set the rotation speed for all chassis fans and especially those providing air for the PCIe/PXIe cards to highest setting in the BIOS/UEFI.
• If you do need to use any adjacent slots, preferably install cards, that grant the most clearance between the devices, such as low-profile 

adapters.

Connector Handling Precautions
The connectors used on this product are designed for high signal quality and good shielding. Due to the limited space on the front-panel they 
have to be as small as possible to fit the needed signal connections on the front panel. Therefore these connectors are vulunable to mechanical 
damages when used not properly. Especially SMB and MMCX connctors may be broken when not operated correctly.

Always dismount the connections by operating the connector itself and not the cable. Always move the cable 
connector in a straight line from the board connector. Do not cant the connector when opening the connection. 
A broken connector can only be replaced in factory and is not covered by warranty.

  



Hardware Installation M5i PCIe Cards

(c) Spectrum Instrumentation GmbH 28

M5i PCIe Cards

System Requirements
All Spectrum M5i.xxxx-x16 instrumentation cards are compliant to the PCI Express 3.0 standard and require in general two adjacent free 
3/4 length PCI Express slot spaces. It is possible to install the card into a single PCIe slot if the adjacent slot is empty and has an accessible 
slot bracket. The adjacent slot can have a different slot type like PCI or can be unsoldered.

The main mounting slot must mechanically be a x16 slot, electrically all lane widths are supported, be it x1, x4, x8 or x16. For full data 
transfer performance using a Generation 3 slot is recommended but the card will also work in a Gen 1 or Gen 2 speed, but with lower 
transfer speed. 

Some x16 PCIe slots are for the use of graphic cards only and can not be used for other cards. Please consult your mainboard manual for 
details. Depending on the installed options additional free slots can be necessary.

Installing the M5i board in the system
Please be sure that the system is powered-down and all power cables are disconnected from the system before starting with the installation 
process.

Installing a single board without any options
Before installing the board you first need to unscrew and remove the dedicated blind-bracket usually mounted to cover unused slots of your 
PC. Please keep the screw in reach to fasten your Spectrum card afterwards. All Spectrum M5i cards mechanically require one PCI Express 
x16 slot (electrically either x1, x4, x8 or x16). Now insert the board slowly into your computer. This is done best with one hand each at both 
fronts of the board.   

Please take especial care to not bend the card in any direction while inserting it into the system. Excessive 
bending of the card may damage the PCB permanently and is not covered by the standard warranty.

Please be very careful when inserting the board in the slot, as most of the mainboards are mounted with 
spacers and therefore might be damaged if they are exposed to high pressure.

After the insertion of the board fasten the screw of the bracket carefully, without overdoing.

Installing the M5i.xxxx-x16 PCI Express card in a PCIe 16 slot:

Image 6: Mounting M5i PCIe card into connector



Hardware Installation M5i PCIe Cards

(c) Spectrum Instrumentation GmbH 29

 

Additional notes on PCIe x16 slot retention
M5i-xxxx-x16 cards do have an additional PCIe retention hook 
(hockey stick) added to the PCB. 

That allows the card to be additionally locked when being in-
stalled into a PCIe x16 slot.

When installing the card in a x16 slot, make sure that the locking mechanism of the slots properly lock in 
place with the retention hook.

Providing additional power to M5i.xxxx-x16 cards
All PCI Express cards, with the exception of graphic adapters, 
are per specification only allowed to consume a maximum 
power of 25W per card. The M5i PCIe cards are specified 
with a power consumption that exceeds the 25W of total pow-
er.

This is why all M5i cards must be supplied with the re-
quired voltages via a dedicated PCIe 6-pin power connector 
directly from the system power supply.

As part of its power-on routine, the card will automatically de-
tect, whether a cable is plugged or not and will prevent start-
ing the card if there is no power connection In that case the 
front panel LED will shop a RED light.

Please only connect 6-pin PCIe power cables to the 
M5i cards power connector and make absolutely sure, that its three lower row wires are marked yellow 
(hence providing 12V) and the three upper row wires (the side of the connectors retention hook) are marked 
black providing a connection to system ground (GND), as shown on the picture.

Image 7: M5i card location of the PCIe retention hook

Image 8: M5i card mandatory power connection usage



Hardware Installation M5i PCIe Cards

(c) Spectrum Instrumentation GmbH 30

Installing multiple boards synchronized by Star-Hub option

When fitting the card, please take care not the damage the motherboard with the lower edge of the three 
metal PCIe brackets.

Hooking up the boards
Before mounting several synchronized boards for a multi channel 
system into the PC you can hook up the cards with their synchroni-
zation cables first. If there is enough space in your computer’s case 
(e.g. a big tower case) you can also mount the boards first and 
hook them up afterwards. Spectrum ships the card carrying the star-
hub option together with the ordered number of synchronization ca-
bles. All of them are matched to the same length, to achieve a min-
imal clock delay between the cards.

Only use the provided M5i miniature coaxial cables. 

Remove the protective plastic caps on the cable before plugging. It 
is recommended to keep these protective caps, in case that you 
want to re-apply them to the cables, when they are not in use.

All of the cards, including the master card, carrying the 
star-hub piggy-back module, must be wired to the star-hub.

It is important, that the master card that is carrying the Star-Hub is 
connected to its dedicated “Carrier card” connector.
The software driver will detect, if the master card is not connected 
correctly and issue a Star-Hub connection error.

For all further slave cards that are to be synchronized, it does not 
matter which of the remaining available connectors on the Star-Hub 
module you use.

The software driver will automatically detect and enumerate all oth-
er synchronized boards automatically.

All of the synchronization cables are secured against wrong inser-
tion and will not latch into place, in case that the connector is not in the correct 
orientation. 

BThe connectors latch in place once properly inserted and are hence locked and 
secured against unplugging unintentionally.

Consequently the metallic latch on the plugs is required to be pressed whilst remov-
ing any of the synchronization cables! The way that the connectors are oriented 
on either PCB allow for easy access of the plug’s latch.#

Both of the synchronization cable plugs will easily slide into place and latch with a “click”, when correctly 
inserted into the card and Star-Hub connectors. No excessive force is required.

The metallic shield of the connectors are very thin and might have slightly pointy corners. Caution is advised 
when inserting the cables. 

Image 9: Two M5i cards with Star-Hub 

Image 10: M5i card showing mounted star-hub and the card’s sync bus 

Image 11: Synchronisation connectors with  marker on connector latch



Hardware Installation M5i PCIe Cards

(c) Spectrum Instrumentation GmbH 31

Mounting the wired boards
Before installing the cards you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your 
PC. Please keep the screws in reach to fasten your Spectrum cards afterwards.

Spectrum M5i cards with the option „M5i.xxxx-SH8” installed, require three slots with ¾ PCIe length. On both sides of the connecting slot 
for the card, one additional slot in width is required to accommodate for the two slots required by any M5i.xxxx card plus the additional slot 
required, for the Star-Hub.

Now insert the cards slowly into your computer. This is done best with one hand each at both fronts of the board.

While inserting the board take extra care to not bend the card in any direction while inserting it in the system. 
A bending of the card may damage the card’s  PCB and is not covered by the standard warranty.

Also take very special care, when inserting the board with its three brackets, not to damage any components 
on the mainboard, by very carefully observing the lower parts of all three PCIe brackets during the entire 
insertion process.

Please be very careful when inserting the cards in the slots, as most of the mainboards are mounted with 
spacers and therefore might be damaged if they are exposed to high pressure.

 

Shipment of systems with Spectrum cards installed
When shipping complete systems with Spectrum cards installed make sure that the cards are properly secured and cannot bent while being 
transported. When using freight forwarders, the transport and handling processes can be quite rough potentially subjecting the shopped PC 
system to quite large shocks. If the installed spectrum cards are not well mounted, secured correctly at the front and - if applicable for your 
model - back of the card, it's possible that they can bend when subjected to strong forces, such when a shipment container is dropped. 

If damage occurs during a transport, we do not consider this to be covered by the warranty.

To avoid this we strongly recommend that when shipping these systems, customers either:

• Install the cards securely - with separate protection - so they cannot bend, or
• Remove the cards and ship them separately in their original shipping boxes (or similar packaging)

Please note that a sole fixing of the card at the front panel may not be sufficient to avoid damages in case of a mechanical shock!

  

 



Software Driver Installation and Driver Update Windows

(c) Spectrum Instrumentation GmbH 32

Software Driver Installation and Driver Update
Before using the board, a driver must be installed that matches the operating system. Later on the same principles for the initial installation 
also apply, when updating an existing driver on the system to a newer version.

Since driver V3.33 (released on install-disk V3.48 in August 2017) the installation is done via an installer 
executable rather than manually via the Windows Device Manager. The steps for manually installing a card 
has since been moved to a separate application note „AN008 - Legacy Windows Driver Installation“.

This new installer is common on all currently supported Windows platforms (Windows 7, Windows 8, Windows 10 and Windows 11) both 
32bit and 64bit. The driver from the USB-Stick supports all cards of the M2i/M3i, M4i/M4x, M2p and M5i series, meaning that you can 
use the same driver for all cards of these families. This driver installer is also available from the Spectrum homepage under
https://spectrum-instrumentation.com/support/downloads.php 

Windows

Before initial installation
When you install a card for the very first time, Windows will dis-
cover the new hardware and might try to search the Microsoft 
Website for available matching driver modules (where no match-
ing driver will be found).

Prior to running the Spectrum installer, the card will hence appear 
in the Windows device manager as a generalized card, shown 
here is the device manager of a Windows 10 as an example.

• M2i and M3i cards will be shown as „DPIO module“

• M5i, M4i, M4x and M2p cards will be shown as
„PCI Data Acquisition and Signal Processing Controller“

Running the driver Installer/Update
Simply run the installer supplied either on the USB-Stick
“\Driver\windows“ folder or download it from our homepage 
and run it.

The installer can be run on a fresh system for the first install or also 
later on, when updating an already existing driver on the system.

Image 12: Windows Device Manager showing a new Spectrum card

Image 13: Spectrum Driver Installer Welcome Screen



Software Driver Installation and Driver Update Windows

(c) Spectrum Instrumentation GmbH 33

After installation
After running the Spectrum driver installer, the card will appear in 
the Windows device manager with its name matching the card se-
ries.

The card is now ready to be used with the new or updated driver.

Image 14: Spectrum Driver Installer - Progress

Image 15: Spectrum Driver Installer - finished

Image 16: Windows Device Manager showing properly installed Spectrum card



Software Driver Installation and Driver Update Linux

(c) Spectrum Instrumentation GmbH 34

Linux

Overview
The Spectrum M2i/M3i/M4i/M4x/M2p/M5i cards and digitizerNETBOX/generatorNETBOX or
hybridNETBOX products are delivered with Linux drivers suitable for Linux installations based on kernel 2.6, 
3.x, 4.x or 5.x, single processor (non-SMP) and SMP systems, 32 bit and 64 bit systems. As each Linux 
distribution contains different kernel versions and different system setup it is in nearly every case necessary, 
to have a directly matching kernel driver for card level products to run it on a specific system.
For digitizerNETBOX/generatorNETBOX or hybridNETBOX products the library is sufficient and no kernel 
driver has to be installed.

Spectrum delivers pre-compiled kernel driver modules for a number of common distributions with the cards. 
You may try to use one of these kernel modules for different distributions which have a similar kernel version. 
Unfortunately this won’t work in most cases as most Linux system refuse to load a driver which is not exactly 
matching. In this case it is possible to get the kernel driver sources from Spectrum. Please contact your local 
sales representative to get more details on this procedure.

The Standard delivery contains the pre-compiled kernel driver modules for the most popular Linux distributions, like Suse, Debian, Fedora and 
Ubuntu. The list with all pre-compiled and readily supported distributions and their respective kernel version can be found under:
https://spectrum-instrumentation.com/support/knowledgebase/software/Supported_Linux_Distributions.php or via the shown QR code.

The Linux drivers have been tested with all above mentioned distributions by Spectrum. Each of these distributions has been installed with the 
default setup using no kernel updates. A lot more different distributions are used by customers with self compiled kernel driver modules.

Driver Installation with Installation Script
The driver is delivered as installable kernel modules together with libraries to access the kernel driver. The installation script will help you with 
the installation of the kernel module and the library. 

This installation is only needed if you are operating real locally installed cards. For software emulated demo 
cards, remotely installed cards or for digitizerNETBOX/generatorNETBOX/hybridNETBOX products it is only 
necessary to install the libraries without a kernel as explained further below.

Login as root
It is necessary to have the root rights for installing a driver.

Call the install.sh <install_path> script
This script will try to use the package management of the system to install the kernel module and user-space driver library packages:

• the kernel driver package is called „spcm“ (M2i, M3i) or „spcm4“ (M4i, M4x, M2p, M5i)
• the driver library package is called „libspcm_linux“

Udev support
Once the driver is loaded it automatically generates the device nodes under /dev. The cards are automatically named to /dev/spcm0,
/dev/spcm1,...

You may use all the standard naming and rules that are available with udev. 

Start the driver
The kernel driver should be loaded automatically when the system boots. If you need to load the kernel driver manually use the „modprobe“ 
command (as root or using sudo):

For M2i and M3i cards:

For M5i, M4i, M4x and M2p cards:

Get first driver info
After the driver has been loaded successfully some information about the installed boards can be found in the matching /proc/ file as shown 
below. Some basic information from the on-board EEProm is listed for every card.

modprobe spcm

modprobe spcm4



Software Driver Installation and Driver Update Linux

(c) Spectrum Instrumentation GmbH 35

For M2i and M3i cards:

For M5i, M4i, M4x and M2p cards:

Stop the driver
You can unload the kernel driver using the „modprobe -r“ command (as root or using sudo):

For M2i and M3i cards:

For M5i, M4i, M4x and M2p cards:

Standard Driver Update
A driver update is done with the same commands as shown above. Please make sure that the driver has been stopped before updating it. 
To stop the driver you may use the proper “modprobe -r” command as shown above.

Compilation of kernel driver sources (optional and local cards only)
The driver sources are only available for existing customers upon special request. Please send an email to Support@spec.de to receive the 
kernel driver sources. The driver sources are not part of the standard delivery. The driver source package contains only the sources of the 
kernel module, not the sources of the library.

Please do the following steps for compilation and installation of the kernel driver module:

Login as root
It is necessary to have the root rights for installing a driver.

Call the compile script
The compile script depends on the type of card that you have installed:

• for M2i and M3i cards: make_spcm_linux_kerneldrv.sh
• for M5i, M4i, M4x and M2p cards: make_spcm4_linux_kerneldrv.sh

This script will examine the type of system you use and compile the kernel with the correct settings. The compilation of the kernel driver modules 
requires the kernel sources of the running kernel. These are normally available as a package with a name like kernel-devel, kernel-dev, kernel-
source and need to match the running kernel.

The compiled driver module will be copied to the module directory of the kernel (/lib/modules/$(uname -r)/kernel/drivers/), 
and will be loaded automatically at the next boot. To load or unload the kernel driver module manually use the modprobe command as 
explained above in “Start the driver” and “Stop the driver”.

Update of a self compiled kernel driver
If the kernel driver has changed, one simply has to perform the same steps as shown above and recompile the kernel driver module. However 
the kernel driver module isn’t changed very often.

Normally an update only needs new libraries. To update the libraries only you can either download the full Linux driver
(spcm_linux_drv_v123b4567) and only use the libraries out of this or one downloads the library package which is much smaller and doesn’t 
contain the pre-compiled kernel driver module (spcm_linux_lib_v123b4567).

The update is done with a dedicated script which only updates the library file. This script is present in both driver archives:

cat /proc/spcm_cards

cat /proc/spcm4_cards

modprobe -r spcm

modprobe -r spcm4

sh install_libonly.sh



Software Driver Installation and Driver Update Linux

(c) Spectrum Instrumentation GmbH 36

Installing the library only without a kernel (for remote devices)
The kernel driver module only contains the basic hardware functions that are necessary to access locally installed card level products. The 
main part of the driver is located inside a dynamically loadable library that is delivered with the driver. This library is available in two different 
versions:

• spcm_linux_32bit_stdc++6.so - supporting libstdc++.so.6 on 32 bit systems
• spcm_linux_64bit_stdc++6.so - supporting libstdc++.so.6 on 64 bit systems

The matching version is installed automatically in the “/usr/lib” or “/usr/lib64/”or “/usr/lib/x86_64-linux-gnu” directory 
(depending on your Linux distribution) by the kernel driver install script for card level products. The library is renamed for easy access to 
libspcm_linux.so. 

For digitizerNETBOX/generatorNETBOX/hybridNETBOX products and also for evaluating or using only the software simulated demo cards 
the library is installed with a separate install script:

To access the driver library one must include the library in the compilation:

To start programming the cards under Linux please use the standard C/C++ examples which are all running under Linux and Windows.

Installation from Spectrum Repository
The driver library, Spectrum Control Center and SBench6 can be easily installed and updated from our online repositories.Adding the repos-
itory to the system and installing software differs depending on the package format used by the Linux distribution.

DEB based distributions (like Debian, Ubuntu and derived distributions)
Execute the following commands to get the Spectrum repository key and convert it for local use:

To add the repository create a new file /etc/apt/sources.list.d/spectrum-instrumentation.list with this content. Please note that there is a man-
datory blank between URL and “./”:

Alternatively this line can be added to /etc/apt/sources.list

Then run

to update the repository information.

To install the software (e.g. SBench6) run

An overview of DEB based distributions can be found here: https://en.wikipedia.org/wiki/Category:Debian-based_distributions

RPM based distributions
On distributions using Zypper (such as openSUSE, SLES, ...) to add the repository run:

The repository information will be updated automatically.

To install the software (e.g. SBench6) run

sh install_libonly.sh

gcc -o test_prg -lspcm_linux test.cpp

wget http://spectrum-instrumentation.com/dl/repo-key.asc
gpg --dearmor -o repo-key.gpg repo-key.asc
cp repo-key.gpg /etc/apt/spectrum-instrumentation.gpg

deb [signed-by=/etc/apt/spectrum-instrumentation.gpg] http://spectrum-instrumentation.com/dl/ ./

sudo apt update

sudo apt install sbench6

sudo zypper ar --repo http://spectrum-instrumentation.com/dl/spectrum_instrumentation.repo

sudo zypper install SBench6



Software Driver Installation and Driver Update Linux

(c) Spectrum Instrumentation GmbH 37

On distributions using DNF (such as Fedora, CentOS Stream, RHEL, ...) to add the repository run

The repository information will be updated automatically.

To install the software (e.g. SBench6) run

An overview of RPM based distributions can be found here: https://en.wikipedia.org/wiki/Category:RPM-based_Linux_distributions

Control Center
The Spectrum Control Center is also available for Linux and needs to be installed sep-
arately. The features of the Control Center are described in a later chapter in deeper 
detail. The Control Center has been tested under all Linux distributions for which Spec-
trum delivers pre-compiled kernel modules. The following packages need to be in-
stalled to run the Control Center:

• X-Server
• expat
• freetype
• fontconfig
• libpng
• libspcm_linux (the Spectrum Linux driver library)

Installation
Use the supplied packages in either *.deb or *.rpm format found in the driver section 
of the USB stick by double clicking the package file root rights from a X-Windows win-
dow.

The Control Center is installed under KDE, Gnome or Unity in the system/system tools 
section. It may be located directly in this menu or under a „More Programs“ menu. The 
final location depends on the used Linux distribution. The program itself is installed as
/usr/bin/spcmcontrol and may be started directly from here.

Manual Installation
To manually install the Control Center, first extract the files from the rpm matching your distribution:

You get the directory structure and the files contained in the rpm package. Copy the binary spcmcontrol to /usr/bin. Copy the .desktop 
file to /usr/share/applications. Run ldconfig to update your systems library cache. Finally you can run spcmcontrol.

Troubleshooting
If you get a message like the following after starting spcmcontrol:

sudo dnf config-manager --add-repo http://spectrum-instrumentation.com/dl/spectrum_instrumentation.repo

sudo dnf install SBench6

rpm2cpio spcmcontrol-{Version}.rpm > ~/spcmcontrol-{Version}.cpio
cd ~/
cpio -id < spcmcontrol-{Version}.cpio

spcm_control: error while loading shared libraries: libz.so.1: cannot open shared object file: No such file 
or directory

Image 17: Device Manager showing a new Spectrum card



Software Driver Installation and Driver Update Linux

(c) Spectrum Instrumentation GmbH 38

Run ldd spcm_control in the directory where spcm_control resides to see the dependencies of the program. The output may look like this:

As seen in the output, one of the libraries isn’t found inside the library cache of the system. Be sure that this library has been properly installed. 
You may then run ldconfig. If this still doesn’t help please add the library path to /etc/ld.so.conf and run ldconfig again. 

If the libspcm_linux.so is quoted as missing please make sure that you have installed the card driver properly before. If any other library is 
stated as missing please install the matching package of your distribution. 

 

libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x4019e000)
libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x401ad000)
libz.so.1 => not found
libdl.so.2 => /lib/libdl.so.2 (0x402ba000)
libpthread.so.0 => /lib/tls/libpthread.so.0 (0x402be000)
libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x402d0000)



Software Software Overview

(c) Spectrum Instrumentation GmbH 39

Software
This chapter gives you an overview about the structure of the drivers and the software, where to find and how to use the examples. It shows 
in detail, how the drivers are included using different programming languages and deals with the differences when calling the driver functions 
from them.

This manual only shows the use of the standard driver API. For further information on programming drivers 
for third-party software like LabVIEW, MATLAB, IVI or SCAPP an additional manual is required that is avail-
able on the USB stick or by download from our homepage.

 

Software Overview

The Spectrum drivers offer you a common and fast API for using all of the board hardware features. This API is the same on all supported 
operating systems. Based on this API one can write own programs using any programming language that can access the driver API. This 
manual describes in detail the driver API, providing you with the necessary information to write your own programs.
The  drivers for third-party products like LabVIEW or MATLAB, IVI or SCAPP are also based on this API. The special functionality of these 
drivers is not subject of this document and is described with separate manuals available on the USB stick or on the website.

 

Card Control Center
A special Card Control Center is available on the USB stick and from the internet for 
all Spectrum M2i/M3i/M4i/M4x/M2p/M5i cards and for all digitizerNETBOX, 
generatorNETBOX or hybridNETBOX products. Windows users find the Control 
Center installer on the USB stick under „Install\win\spcmcontrol_install.exe“.

Linux users find the versions for the different stdc++ libraries under /Install/linux/sp-
cm_control_center/ as RPM packages.

When using a digitizerNETBOX/generatorNETBOX/hybridNETBOX the Card Con-
trol Center installers for Windows and Linux are also directly available from the in-
tegrated webserver.

The Control Center under Windows and Linux is available as an executive program. 
Under Windows it is also linked as a system control and can be accessed directly 
from the Windows control panel. Under Linux it is also available from the KDE Sys-
tem Settings, the Gnome or Unity Control Center. The different functions of the Spectrum Card Control Center are explained in detail in the 
following passages.

To install the Spectrum Control Center you will need to be logged in with administrator rights for your oper-
ating system. On all Windows versions, starting with Windows Vista, installations with enabled UAC will ask 
you to start the installer with administrative rights (run as administrator).

Image 18: Spectrum Kernel Driver, API Library and Software structure

Image 19: Spectrum Control Center Installer



Software Card Control Center

(c) Spectrum Instrumentation GmbH 40

Discovery of Remote Cards, digitizerNETBOX/generatorNETBOX/hybridNETBOX products
The Discovery function helps you to find and identify the Spectrum LXI 
instruments like digitizerNETBOX, generatorNETBOX or
hybridNETBOX available to your computer on the network. The Dis-
covery function will also locate Spectrum card products handled by 
an installed Spectrum Remote Server somewhere on the network. The 
function is not needed if you only have locally installed cards.

Please note that only remote products are found that are currently not 
used by another program. Therefore in a bigger network the number 
of Spectrum products found may vary depending on the current usage 
of the products.

Execute the Discovery function by pressing the „Discovery“ button. 
There is no progress window shown. After the discovery function has 
been executed the remotely found Spectrum products are listed under 
the node Remote as separate card level products. Inhere you find all 
hardware information as shown in the next topic and also the needed 
VISA resource string to access the remote card.

Please note that these information is also stored on your system and 
allows Spectrum software like SBench 6 to access the cards directly 
once found with the Discovery function.

After closing the control center and re-opening it the previously found 
remote products are shown  with the prefix cached, only showing the 
card type and the serial number. This is the stored information that al-
lows other Spectrum products to access previously found cards. Using 
the „Update cached cards“ button will try to re-open these cards and 
gather information of it. Afterwards the remote cards may disappear 
if they’re in use from somewhere else or the complete information of 
the remote products is shown again.

Enter IP Address of digitizerNETBOX/generatorNETBOX/hybridNETBOX manually

If for some reason an automatic discovery is not suitable, such as the case where the remote 
device is located in a different subnet, it can also be manually accessed by its type and IP ad-
dress.

 

Wake On LAN of digitizerNETBOX/generatorNETBOX/hybridNETBOX
Cached digitizerNETBOX/generatorNETBOX/hybridNETBOX products that are currently in 
standby mode can be woken up by using the „Wake remote device“ entry from the context 
menu.

The Control Center will broadcast a standard Wake On LAN „Magic Packet“, that is sent to the 
device’s MAC address.

It is also possible to use any other Wake On LAN software to wake e.g. a digitizerNETBOX by 
sending such a „Magic Packet“ to the MAC address, which must be then entered manually.

It is also possible to wake a remote device from your own application software by using the SP-
C_NETBOX_WAKEONLAN register.  To wake a digitizerNETBOX, generatorNETBOX or 
hybridNETBOX with the MAC address „00:03:2d:20:48“, the following command can be is-
sued:

spcm_dwSetParam_i64 (NULL, SPC_NETBOX_WAKEONLAN, 0x00032d2048ec);

Image 20: Spectrum Control Center showing detail card information

Image 21: Spectrum Control Center - entering an IP ad-
dress for a NETBOX

Image 22: Spectrum Control Center: wake on LAN 
for a cached card



Software Card Control Center

(c) Spectrum Instrumentation GmbH 41

Netbox Monitor
The Netbox Monitor permanently monitors whether the digitizerNETBOX/generatorNETBOX/hybridNETBOX is still available through LAN. 
This tool is helpful if e.g. the digitizerNETBOX is located somewhere in the company LAN or located remotely or directly mounted inside 
another device. Starting the Netbox Monitor can be done in two different ways:

• Starting manually from the Spectrum Control Center using the context menu as shown above
• Starting from command line. The Netbox Monitor program is automatically installed together with the Spectrum Control Center and is 

located in the selected install folder. Using the command line tool one can place a simple script into the autostart folder to have the Net-
box Monitor running automatically after system boot. The command line tool needs the IP address of the
digitizerNETBOX/generatorNETBOX/hybridNETBOX to monitor:

The Netbox Monitor is shown as a small window with the type of digitizerNETBOX/generatorNETBOX in the title and the IP ad-
dress under which it is accessed in the window itself. The Netbox Monitor runs completely independent of any other software and 
can be used in parallel to any application software. The background of the IP address is used to display the current status of the 
device. Pressing the Escape key or alt + F4 (Windows) terminates the Netbox Monitor permanently.

After starting the Netbox Monitor it is also displayed as a tray icon under Windows. The tray icon itself shows the 
status of the digitizerNETBOX/generatorNETBOX/hybridNETBOX as a color. Please note that the tray icon may 
be hidden as a Windows default and need to be set to visible  using the Windows tray setup.

Left clicking on the tray icon will hide/show the small Netbox Monitor status window. Right clicking on the tray 
icon as shown in the picture on the right will open up a context menu. In here one can again select to hide/show 
the Netbox Monitor status window, one can directly open the web interface from here or quit the program (includ-
ing the tray icon) completely.

The checkbox „Show Status Message“ controls whether the tray icon should emerge a status message on status 
change. If enabled (which is default) one is notified with a status message if for example the LAN connection to 
the digitizerNETBOX/generatorNETBOX/hybridNETBOX is lost.

The status colors:

• Green: digitizerNETBOX/generatorNETBOX/hybridNETBOX available and accessible over LAN
• Cyan: digitizerNETBOX/generatorNETBOX/hybridNETBOX is used from my computer
• Yellow: digitizerNETBOX/generatorNETBOX/hybridNETBOX is used from a different computer
• Red: LAN connection failed, digitizerNETBOX/generatorNETBOX/hybridNETBOX is no longer accessible

Device identification
Pressing the Identification button helps to identify a certain device in either a remote location, such as inside 
a 19“ rack where the back of the device with the type plate is not easily accessible, or a local device installed 
in a certain slot. Pressing the button starts flashing a visible LED on the device, until the dialog is closed, for:

• On a digitizerNETBOX/generatorNETBOX/hybridNETBOX:  the LAN LED light on the front plate of the 
device

• On local or remote M5i, M4i, M4x or M2p card: the indicator LED on the card’s bracket

This feature is not available for M2i/M3i cards, either local or remote, other than inside a digitizerNETBOX or generatorNETBOX.

 

NetboxMonitor 192.168.169.22

Image 23: Netbox Monitor ac-
tivation



Software Card Control Center

(c) Spectrum Instrumentation GmbH 42

Hardware information
Through the Control Center you can easily get the main information 
about all the installed Spectrum hardware. For each installed card 
there is a separate tree of information available. The picture shows the 
information for one installed card by example. This given information 
contains:

• Basic information as the type of card, the production date and its 
serial number, as well as the installed memory, the hardware revi-
sion of the base card, the number of available channels and 
installed acquisition modules.

• Information about the maximum sampling clock and the available 
quartz clock sources.

• The installed features/options in a sub-tree. The shown card is 
equipped for example with the option Multiple Recording, Gated 
Sampling, Timestamp and ABA-mode.

• Detailed Information concerning the installed acquisition modules. 
In case of the shown analog acquisition card the information con-
sists of the module’s hardware revision, of the converter resolution 
and the last calibration date as well as detailed information on the 
available analog input ranges, offset compensation capabilities 
and additional features of the inputs.

Firmware information
Another sub-tree is informing about the cards firmware ver-
sion. As all Spectrum cards consist of several programmable 
components, there is one firmware version per component.

Nearly all of the components firmware can be updated by 
software. The only exception is the configuration device, 
which only can receive a factory update.

The procedure on how to update the firmware of your Spec-
trum card with the help of the card control center is described 
in a dedicated section later on.

The procedure on how to update the firmware of your
digitizerNETBOX/generatorNETBOX/hybridNETBOX with 
the help of the integrated Webserver is described in a dedi-
cated chapter later on.

Image 24: Spectrum Control Center: detailed hardware information on installed card

Image 25: Spectrum Control Center - showing firmware information of an installed card



Software Card Control Center

(c) Spectrum Instrumentation GmbH 43

Software License information
This sub-tree is informing about installed possible software li-
censes. 

As a default all cards come with the demo professional li-
cense of SBench6, that is limited to 30 starts of the software 
with all professional features unlocked.

The number of demo starts left can be seen here.

Driver information
The Spectrum card control center also offers a way to 
gather information on the installed and used Spectrum 
driver.

The information on the driver is available through a
dedicated tab, as the picture is showing in the example.

The provided information informs about the used type, 
distinguishing between Windows or Linux driver and the 
32 bit or 64 bit type.

It also gives direct information about the version of the
installed Spectrum kernel driver, separately for M2i/ M3i 
cards and M4i/M4x/M2p/M5i cards and the version of 
the library (which is the *.dll file under Windows).

The information given here can also be found under
Windows using the device manager form the 
control panel. For details in driver details within the con-
trol panel please stick to the section on driver installation 
in your hardware manual.

Image 26: Spectrum Control Center - showing firmware information of an installed card

Image 27: Spectrum Control Center - showing driver information details



Software Card Control Center

(c) Spectrum Instrumentation GmbH 44

Installing and removing Demo cards
With the help of the card control center one can install 
demo cards in the system. A demo card is simulated by the 
Spectrum driver including data production for acquisition 
cards. As the demo card is simulated on the lowest driver 
level all software can be tested including SBench, own ap-
plications and drivers for third-party products like Lab-
VIEW. The driver supports up to 64 demo cards at the 
same time. The simulated memory as well as the simulated 
software options can be defined when adding a demo 
card to the system.

Please keep in mind that these demo cards are only meant 
to test software and to show certain abilities of the soft-
ware. They do not simulate the complete behavior of a 
card, especially not any timing concerning trigger, record-
ing length or FIFO mode notification. The demo card will 
calculate data every time directly after been called and 
give it to the user application without any more delay. As 
the calculation routine isn’t speed optimized, generating 
demo data may take more time than acquiring real data 
and transferring them to the host PC.

Installed demo cards are listed together with the real hard-
ware in the main information tree as described above. Ex-
isting demo cards can be deleted by clicking the related 
button. The demo card details can be edited by using the 
edit button. It is for example possible to virtually install ad-
ditional feature to one card or to change the type to test 
with a different number of channels.

For installing demo cards on a system without 
real hardware simply run the Control Center installer. If the installer is not detecting the necessary driver files 
normally residing on a system with real hardware, it will simply install the Spcm_driver.

Feature upgrade
All optional features of the M2i/M3i/M4i/M4x/M2p/M5i cards that do not re-
quire any hardware modifications can be installed on fielded cards. After Spec-
trum has received the order, the customer will get a personalized upgrade code. 
Just start the card control center, click on „install feature“ and enter that given code. 
After a short moment the feature will be installed and ready to use. No restart of 
the host system is required.

For details on the available options and prices please contact your local Spectrum 
distributor.

Software License upgrade
The software license for SBench 6 Professional is installed on the hardware. If order-
ing a software license for a card that has already been delivered you will get an up-
grade code to install that software license. The upgrade code will only match for that 
particular card with the serial number given in the license. To install the software li-
cense please click the „Install SW License“ button and type in the code exactly as 
given in the license.

Performing card calibration (A/D only)
The card control center also provides an easy way to access the 
automatic card calibration routines of the Spectrum A/D convert-
er cards. Depending on the used card family this can affect offset 
calibration only or also might include gain calibration. Please re-
fer to the dedicated chapter in your hardware manual for details.

This function is not available for D/A cards (AWG) or digital I/O 
cards

Image 28: Spectrum Control Center - adding a demo card to the sysstem

Image 29: Spectrum Control Center - feature update, code entry

Image 30: Spectrum Control Center - software license installe

Image 31: Spectrum Control Center - running an on-board calibration



Software Card Control Center

(c) Spectrum Instrumentation GmbH 45

Performing memory test
The complete on-board memory of the Spectrum 
M2i/M3i/M4i/M4x/M2p/M5i cards can be tested by the memory test includ-
ed with the card control center.

When starting the test, randomized data is generated and written to the on-
board memory. After a complete write cycle all the data is read back and com-
pared with the generated pattern.

Depending on the amount of installed on-board memory, and your computer’s 
performance this operation might take a while.

Transfer speed test
The control center allows to measure the bus transfer 
speed of an installed Spectrum card. Therefore different 
setup is run multiple times and the overall bus transfer 
speed is measured. To get reliable results it is necessary 
that you disable debug logging as shown below. It is also 
highly recommended that no other software or time-con-
suming background threads are running on that system. 
The speed test program runs the following two tests:

• Repetitive Memory Transfers: single DMA data trans-
fers are repeated and measured. This test simulates 
the measuring of pulse repetition frequency when 
doing multiple single-shots. The test is done using dif-
ferent block sizes. One can estimate the transfer in 
relation to the transferred data size on multiple single-
shots.

• FIFO mode streaming: this test measures the streaming speed in FIFO mode. The test can only use the same direction of transfer the card 
has been designed for (card to PC=read for all DAQ cards, PC to card=write for all generator cards and both directions for I/O cards). 
The streaming speed is tested without using the front-end to measure the maximum bus speed that can be reached.
The Speed in FIFO mode depends on the selected notify size which is explained later in this manual in greater detail.

The results are given in MB/s meaning MByte per second. To estimate whether a desired acquisition speed is possible to reach one has to 
calculate the transfer speed in bytes. There are a few things that have to be put into the calculation:

• 12, 14 and 16 bit analog cards need two bytes for each sample.
• 16 channel digital cards need 2 bytes per sample while 32 channel digital cards need 4 bytes and 64 channel digital cards need 8 

bytes.
• The sum of analog channels must be used to calculate the total transfer rate.
• The figures in the Speed Test Utility are given as MBytes, meaning 1024 * 1024 Bytes, 1 MByte = 1048576 Bytes

As an example running a card with 2 14 bit analog channels with 28 MHz produces a transfer rate of [2 channels * 2 Bytes/Sample * 
28000000] = 112000000 Bytes/second. Taking the above figures measured on a standard 33 MHz PCI slot the system is just capable of 
reaching this transfer speed: 108.0 MB/s = 108 * 1024 * 1024 = 113246208 Bytes/second.

Unfortunately it is not possible to measure transfer speed on a system without having a Spectrum card installed.

Debug logging for support cases
For answering your support questions as fast as possible, the 
setup of the card, driver and firmware version and other in-
formation is very helpful.

Therefore the card control center provides an easy way to 
gather all that information automatically.

Different debug log levels are available through the graphi-
cal interface. By default the log level is set to „no logging“ for 
maximum performance.

The customer can select different log levels and the path of 
the generated ASCII text file. One can also decide to delete 
the previous log file first before creating a new one automat-
ically or to append different logs to one single log file.

For maximum performance of your hardware, please make sure that the debug logging is set to „no log-
ging“ for normal operation. Please keep in mind that a detailed logging in append mode can quickly gener-
ate huge log files.

Image 32: Spectrum Control Center - performing memory test

Image 33: Spectrum Control Center - running a transfer speed test of one card

Image 34: Spectrum Control Center - activate debug logging for support cases



Software Card Control Center

(c) Spectrum Instrumentation GmbH 46

Device mapping
Within the „Device mapping“ tab of the Spectrum Control Center, one can ena-
ble the re-mapping of Spectrum devices, be it either local cards, remote instru-
ments such as a digitizerNETBOX, generatorNETBOX, hybridNETBOX or even 
cards in a remote PC and accessed via the Spectrum remote server option.

In the left column the re-mapped device name is visible that is given to the device 
in the right column with its original un-mapped device string.

In this example the two local cards „spcm0“ and „spcm1“ are re-mapped to „sp-
cm1“ and „spcm0“ respectively, so that their names are simply swapped. 

The remote digitizerNETBOX device is mapped to spcm2.

The application software can then use the re-mapped name for simplicity instead 
of the quite long VISA string.

Changing the order of devices within one group (either local cards or remote 
devices) can simply be accomplished by dragging&dropping the cards to their 
desired position in the same table.

 

 

Firmware upgrade
One of the major features of the card control center is the ability to update 
the card’s firmware by an easy-to-use software. The latest firmware revi-
sions can be found in the download section of our homepage under
http://www.spectrum-instrumentation.com.

A new firmware version is provided there as an installer, that copies the 
latest firmware to your system. All files are located in a dedicated subfold-
er „FirmwareUpdate“ that will be created inside the Spectrum installation 
folder. Under Windows this folder by default has been created in the 
standard program installation directory.

Please do the following steps when wanting to update the firmware of 
your M2i/M3i/M4i/M4x/M2p/M5i card:

• Download the latest software driver for your operating system pro-
vided on the Spectrum homepage.

• Install the new driver as described in the driver install section of your 
hardware manual or install manual. All manuals can also be found on 
the Spectrum homepage in the literature download section.

• Download and run the latest Spectrum Control Center installer.
• Download the installer for the new firmware version.
• Start the installer and follow the instructions given there.
• Start the card control center, select the „card“ tab, select the card from 

the listbox and press the „firmware update“ button on the right side.

The dialog then will inform you about the currently installed firmware ver-
sion for the different devices on the card and the new versions that are 
available. All devices that will be affected with the update are marked as 
„update needed“. Simply start the update or cancel the operation now, as 
a running update cannot be aborted.

Please keep in mind that you have to start the update for each card installed in your system separately. Select 
one card after the other from the listbox and press the „firmware update“ button. The firmware installer on 
the other hand only needs to be started once prior to the update.

Do not abort or shut down the computer while the firmware update is in progress. After a successful update 
please shut down your PC completely (remove power). The re-powering is required to finally activate the 
new firmware version of your Spectrum card.

  

Image 35: Spectrum Control Center - using device mapping

Image 36: Spectrum Control Center - doing a firmware update for one device



Software Accessing the hardware with SBench 6

(c) Spectrum Instrumentation GmbH 47

Accessing the hardware with SBench 6
After the installation of the cards and the drivers it can be useful to first test the 
card function with a ready to run software before starting with programming. If 
accessing a digitizerNETBOX/generatorNETBOX a full SBench 6 Professional 
license is installed on the system and can be used without any limitations. For 
plug-in card level products a base version of SBench 6 is delivered with the card 
on USB stick also including a 30 starts Professional demo version for plain card 
products. If you already have bought a card prior to the first SBench 6 release 
please contact your local dealer to get a SBench 6 Professional demo version. 
All digitizerNETBOX/generatorNETBOX products come with a pre-installed full 
SBench 6 Professional.

SBench 6 supports all current acquisition and generation cards and
digitizerNETBOX/generatorNETBOX products from Spectrum. Depending on 
the used product and the software setup, one can use SBench as a digital stor-
age oscilloscope, a spectrum analyzer, a signal generator, a pattern generator, 
a logic analyzer or simply as a data recording front end. Different export and 
import formats allow the use of SBench 6 together with a variety of other pro-
grams.

On the USB stick you’ll find an install version of SBench 6 in the directory „/In-
stall/SBench6“.

The current version of SBench 6 is available free of charge directly from the Spectrum website: www.spectrum-instrumentation.com. Please 
go to the download section and get the latest version there.

SBench 6 has been designed to run under Windows 7, 8, 10 and Windows 11 as well as Linux using KDE, Gnome or Unity Desktop.

  

C/C++ Driver Interface
C/C++ is the main programming language for which the drivers have been designed for. Therefore the interface to C/C++ is the best match. 
All the small examples of the manual showing different parts of the hardware programming are done with C. As the libraries offer a standard 
interface it is easy to access the libraries also with other programming languages like Delphi, Basic, Python or Java . Please read the following 
chapters for additional information on this.

Header files
The basic task before using the driver is to include the header files that are delivered on USB stick together with the board. The header files 
are found in the directory /Driver/c_header. Please don’t change them in any way because they are updated with each new driver version 
to include the new registers and new functionality.

Example for including the header files:

Please always keep the order of including the four Spectrum header files. Otherwise some or all of the func-
tions do not work properly or compiling your program will be impossible!

Table 3: list of C/C++ header files in driver

dlltyp.h Includes the platform specific definitions for data types and function declarations. All data types are based on these definitions. The use of this type definition 
file allows the use of examples and programs on different platforms without changes to the program source. The header file supports Microsoft Visual C++, Bor-
land C++ Builder and GNU C/C++ directly. When using other compilers it might be necessary to make a copy of this file and change the data types accord-
ing to this compiler. 

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation. This header file is common for all cards. Therefore this file also contains a huge number of registers used on other card types 
than the one described in this manual. Please stick to the manual to see which registers are valid for your type of card. 

spcm_drv.h Defines the functions of the used SpcM driver. All definitions are taken from the file dlltyp.h. The functions themselves are described below.
spcerr.h Contains all error codes used with the Spectrum driver. All error codes that can be given back by any of the driver functions are also described here briefly. The 

error codes and their meaning are described in detail in the appendix of this manual. 

// ----- driver includes -----
#include "dlltyp.h"       // 1st include
#include "regs.h"         // 2nd include
#include "spcerr.h"       // 3rd include
#include "spcm_drv.h"     // 4th include

Image 37: SBench 6 overview of main functionality with demo data



Software C/C++ Driver Interface

(c) Spectrum Instrumentation GmbH 48

General Information on Windows 64 bit drivers
After installation of the Spectrum 64 bit driver there are two general ways to access the hardware and to de-
velop applications. If you’re going to develop a real 64 bit application it is necessary to access the 64 bit 
driver dll (spcm_win64.dll) as only this driver dll is supporting the full 64 bit address range. 

But it is still possible to run 32 bit applications or to develop 32 bit applications even under Windows 64 bit. 
Therefore the 32 bit driver dll (spcm_win32.dll) is also installed in the system. The Spectrum SBench5 software 
is for example running under Windows 64 bit using this driver. The 32 bit dll of course only offers the 32 bit 
address range and is therefore limited to access only 4 GByte of memory. Beneath both drivers the 64 bit ker-
nel driver is running.

Mixing of 64 bit application with 32 bit dll or vice versa is not possible.

Microsoft Visual C++ 6.0, 2005 and newer 32 Bit

Include Driver
The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win32_msvcpp.lib that is delivered together 
with the drivers. The library file can be found on the CD in the path /examples/c_cpp/c_header. Please include the library file in your Visual 
C++ project as shown in the examples. All functions described below are now available in your program.

Examples
Examples can be found on CD in the path /examples/c_cpp. This directory includes a number of different examples that can be used with 
any card of the same type (e.g. A/D acquisition cards, D/A acquisition cards). You may use these examples as a base for own programming 
and modify them as you like. The example directories contain a running workspace file for Microsoft Visual C++ 6.0 (*.dsw) as well as project 
files for Microsoft Visual Studio 2005 and newer (*.vcproj) that can be directly loaded or imported and compiled.
There are also some more board type independent examples in separate subdirectory. These examples show different aspects of the cards 
like programming options or synchronization and can be combined with one of the board type specific examples.

As the examples are build for a card class there are some checking routines and differentiation between cards families. Differentiation aspects 
can be number of channels, data width, maximum speed or other details. It is recommended to change the examples matching your card 
type to obtain maximum performance. Please be informed that the examples are made for easy understanding and simple showing of one 
aspect of programming. Most of the examples are not optimized for maximum throughput or repetition rates.

Microsoft Visual C++ 2005 and newer 64 Bit
Depending on your version of the Visual Studio suite it may be necessary to install some additional 64 bit components (SDK) on your system. 
Please follow the instructions found on the MSDN for further information.

Include Driver
The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win64_msvcpp.lib that is delivered together 
with the drivers. The library file can be found on the CD in the path /examples/c_cpp/c_header. All functions described below are now 
available in your program.

Linux Gnu C/C++ 32/64 Bit

Include Driver
The interface of the linux drivers does not differ from the windows interface. Please include the “libspcm_linux.so” library in your makefile 
using the below shown “LIBS = -lspcm_linux” line, to have access to all driver functions. A makefile may look like this:

Examples
The Gnu C/C++ examples share the source with the Visual C++ examples. Please see above chapter for a more detailed documentation of 
the examples. Each example directory contains a makefile for the Gnu C/C++ examples.

COMPILER =   gcc
EXECUTABLE = test_prg
LIBS = -lspcm_linux

OBJECTS =   test.o\
            test2.o

all: $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(COMPILER) $(CFLAGS) -o $(EXECUTABLE) $(LIBS) $(OBJECTS)

%.o: %.cpp
    $(COMPILER) $(CFLAGS) -o $*.o -c $*.cpp



Software Driver functions

(c) Spectrum Instrumentation GmbH 49

C++ for .NET
Please see the next chapter for more details on the .NET inclusion.

Other Windows C/C++ compilers 32 Bit

Include Driver
To access the driver using a compiler such as e.g. MinGW or Borland, the driver functions must be loaded from the 32 bit driver DLL. Most 
compilers offer special tools to generate a matching library (e.g. Borland offers the implib tool that generates a matching library out of the 
windows driver DLL). If such a tool is available it is recommended to use it. Otherwise the driver functions need to be loaded from the dll 
using standard Windows functions. There is one example in the example directory /examples/c_cpp/dll_loading that shows the process. 

Example of function loading:

Other Windows C/C++ compilers 64 Bit

Include Driver
To access the driver using a compiler such as e.g. MinGW or Borland, the driver functions must be loaded from the 64 bit the driver DLL. 
Most compilers offer special tools to generate a matching library (e.g. Borland offers the implib tool that generates a matching library out of 
the windows driver DLL). If such a tool is available it is recommended to use it. Otherwise the driver functions need to be loaded from the dll 
using standard Windows functions. There is one example in the example directory /examples/c_cpp/dll_loading that shows the process for 
32 bit environments. The only line that needs to be modified is the one loading the DLL:

Example of function loading:

Driver functions
The driver contains seven main functions to access the hardware.

Own types used by our drivers
To simplify the use of the header files and our examples with different platforms and compilers and to avoid any implicit type conversions we 
decided to use our own type declarations. This allows us to use platform independent and universal examples and driver interfaces. If you 
do not stick to these declarations please be sure to use the same data type width. However it is strongly recommended that you use our defined 
type declarations to avoid any hard to find errors in your programs. If you’re using the driver in an environment that is not natively supported 
by our examples and drivers please be sure to use a type declaration that represents a similar data width

Notation of variables and functions
In our header files and examples we use a common and reliable form of notation for variables and functions. Each name also contains the 
type as a prefix. This notation form makes it easy to see implicit type conversions and minimizes programming errors that result from using 
incorrect types. Feel free to use this notation form for your programs also-

Function spcm_hOpen
This function initializes and opens an installed card supporting the new SpcM driver interface, which at the time of printing, are all cards of 
the M2i/M3i/M4i/M4x/M2p/M5i series and the related digitizerNETBOX/generatorNETBOX/hybridNETBOX devices. The function re-
turns a handle that has to be used for driver access. If the card can’t be found or the loading of the driver generated an error the function 

hDLL = LoadLibrary ("spcm_win32.dll"); // Load the 32 bit version of the Spcm driver
pfn_spcm_hOpen =  (SPCM_HOPEN*)  GetProcAddress (hDLL, "_spcm_hOpen@4");
pfn_spcm_vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "_spcm_vClose@4");

hDLL = LoadLibrary ("spcm_win64.dll"); // Modified: Load the 64 bit version of the Spcm driver here
pfn_spcm_hOpen =  (SPCM_HOPEN*)  GetProcAddress (hDLL, "spcm_hOpen");
pfn_spcm_vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "spcm_vClose");

Table 4: C/C++ type declarations for drivers and examples

Declaration Type Declaration Type
int8 8 bit signed integer (range from -128 to +127) uint8 8 bit unsigned integer (range from 0 to 255)
int16 16 bit signed integer (range from -32768 to 32767) uint16 16 bit unsigned integer (range from 0 to 65535)
int32 32 bit signed integer (range from -2147483648 to 2147483647) uint32 32 bit unsigned integer (range from 0 to 4294967295)
int64 64 bit signed integer (full range) uint64 64 bit unsigned integer (full range)
drv_handle handle to driver, implementation depends on operating system platform

Table 5: C/C++ type naming convention throughout drivers and examples

Declaration Notation Declaration Notation
int8 byName (byte) uint8 cName (character)
int16 nName uint16 wName (word)
int32 lName (long) uint32 dwName (double word)
int64 llName (long long) uint64 qwName (quad word)
int32* plName (pointer to long) char szName (string with zero termination)



Software Driver functions

(c) Spectrum Instrumentation GmbH 50

returns a NULL. When calling this function all card specific installation parameters are read out from the hardware and stored within the 
driver. It is only possible to open one device by one software as concurrent hardware access may be very critical to system stability. As a 
result when trying to open the same device twice an error will be raised and the function returns NULL.

Function spcm_hOpen (const char* szDeviceName):

Under Linux the device name in the function call needs to be a valid device name. Please change the string according to the location of the 
device if you don’t use the standard Linux device names. The driver is installed as default under /dev/spcm0, /dev/spcm1 and so on. The 
kernel driver numbers the devices starting with 0.

Under Windows the only part of the device name that is used is the trailing number. The rest of the device name is ignored. Therefore to keep 
the examples simple we use the Linux notation in all our examples. The trailing number gives the index of the device to open. The Windows 
kernel driver numbers all devices that it finds on boot time starting with 0.

Example for local installed cards

Example for digitizerNETBOX/generatorNETBOX and remote installed cards

If the function returns a NULL it is possible to read out the error description of the failed open function by simply passing this NULL to the error 
function. The error function is described in one of the next topics.

Function spcm_vClose
This function closes the driver and releases all allocated resources. After closing the driver handle it is not possible to access this driver any 
more. Be sure to close the driver if you don’t need it any more to allow other programs to get access to this device.

Function spcm_vClose:

Example:

Function spcm_dwSetParam
All hardware settings are based on software registers that can be set by one of the functions spcm_dwSetParam. These functions set a register 
to a defined value or execute a command. The board must first be initialized by the spcm_hOpen function. The parameter lRegister must have 
a valid software register constant as defined in regs.h. The available software registers for the driver are listed in the board specific part of 
the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what is 
zero.

drv_handle _stdcall spcm_hOpen (        // tries to open the device and returns handle or error code
    const char* szDeviceName);          // name of the device to be opened                  

drv_handle  hDrv;                   // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("/dev/spcm0");   // open the first card (spcm0) and get a handle to this card
if (!hDrv)
    printf (“open of driver failed\n”);

drv_handle  hDrv;                   // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST0::INSTR");
if (!hDrv)
    printf (“open of driver failed\n”);

void _stdcall spcm_vClose (             // closes the device
    drv_handle  hDevice);               // handle to an already opened device

spcm_vClose (hDrv);



Software Driver functions

(c) Spectrum Instrumentation GmbH 51

Function spcm_dwSetParam

The functions spcm_dwSetParam_d64 and spcm_dwSetParam_ptr have been added with driver release V 7.00

Example:

This example sets the memory size to 16 kSamples (16384). If an error occurred the example will show a short error message

Function spcm_dwGetParam
All hardware settings are based on software registers that can be read by one of the functions spcm_dwGetParam. These functions read an 
internal register or status information. The board must first be initialized by the spcm_hOpen function. The parameter lRegister must have a 
valid software register constant as defined in the regs.h file. The available software registers for the driver are listed in the board specific part 
of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what 
is zero.

Function spcm_dwGetParam

The functions spcm_dwGetParam_d64 and spcm_dwGetParam_ptr have been added with driver release V 7.00

uint32 _stdcall spcm_dwSetParam_i32 (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    int32       lValue);                // the value to be set

uint32 _stdcall spcm_dwSetParam_i64m (  // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    int32       lValueHigh,             // upper 32 bit of the value. Containing the sign bit !
    uint32      dwValueLow);            // lower 32 bit of the value.

uint32 _stdcall spcm_dwSetParam_i64 (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    int64       llValue);               // the value to be set

uint32 _stdcall spcm_dwSetParam_d64 (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    double      dValue);                // the value to be set

uint32 _stdcall spcm_dwSetParam_ptr (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    void*       pvValue,                // pointer for the return value
    unit64      qwLen);                 // length of the buffer behind the pvValue

if (spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, 16384) != ERR_OK)
    printf (“Error when setting memory size\n”);

uint32 _stdcall spcm_dwGetParam_i32 (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be read out
    int32*      plValue);               // pointer for the return value

uint32 _stdcall spcm_dwGetParam_i64m (  // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be read out
    int32*      plValueHigh,            // pointer for the upper part of the return value
    uint32*     pdwValueLow);           // pointer for the lower part of the return value

uint32 _stdcall spcm_dwGetParam_i64 (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be read out
    int64*      pllValue);              // pointer for the return value

uint32 _stdcall spcm_dwGetParam_d64 (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    double*     dValue);                // pointer for the return value

uint32 _stdcall spcm_dwGetParam_ptr (   // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    int32       lRegister,              // software register to be modified
    void*       pvValue,                // pointer for the return value
    unit64      qwLen);                 // length of the buffer behind the pvValue



Software Driver functions

(c) Spectrum Instrumentation GmbH 52

Example:

The example reads out the serial number of the installed card and prints it. As the serial number is available under all circumstances there is 
no error checking when calling this function.

Different call types of spcm_dwSetParam and spcm_dwGetParam: _i32, _i64, _i64m, d64
The four functions only differ in the type of the parameters that are used to call them. As some of the registers can exceed the 32 bit integer 
range (like memory size or post trigger) it is recommended to use the _i64 function to access these registers. However as there are some 
programs or compilers that don’t support 64 bit integer variables there are two functions that are limited to 32 bit integer variables. In case 
that you do not access registers that exceed 32 bit integer please use the _i32 function. In case that you access a register which exceeds 64 
bit value please use the _i64m calling convention. Inhere the 64 bit value is split into a low double word part and a high double word part. 
Please be sure to fill both parts with valid information. 

As some registers need to be read/written in double precision and can’t be read/written as integer values, two additional new functions for 
accessing double values have been added with the suffix _d64.

If accessing 64 bit registers with 32 bit functions the behaviour differs depending on the real value that is currently located in the register. 
Please have a look at this table to see the different reactions depending on the size of the register:

Function spcm_dwGetContBuf
This function reads out the internal continuous memory buffer in bytes, in case one has been allocated. If no buffer has been allocated the 
function returns a size of zero and a NULL pointer. You may use this buffer for data transfers. As the buffer is continuously allocated in memory 
the data transfer will speed up by up to 15% - 25%, depending on your specific kind of card. Please see further details in the appendix of 
this manual.

These functions have been added in driver version 1.36. The functions are not available in older driver ver-
sions.

int32 lSerialNumber;
spcm_dwGetParam_i32 (hDrv, SPC_PCISERIALNO, &lSerialNumber);
printf (“Your card has serial number: %05d\n”, lSerialNumber);

Table 6: Spectrum driver API functions overview and differentiation between 32 bit and 64 bit registers

Internal register read/write Function type Behavior
32 bit register read spcm_dwGetParam_i32 value is returned as 32 bit integer in plValue
32 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer in pllValue
32 bit register read spcm_dwGetParam_i64m value is returned as 64 bit integer, the lower part in plValueLow, the upper part in plValueHigh. The upper part can 

be ignored as it’s only a sign extension
32 bit register read spcm_dwGetParam_d64 value is returned as 64 bit double in pdValue
32 bit register write spcm_dwSetParam_i32 32 bit value can be directly written
32 bit register write spcm_dwSetParam_i64 64 bit value can be directly written, please be sure not to exceed the valid register value range
32 bit register write spcm_dwSetParam_i64m 32 bit value is written as llValueLow, the value llValueHigh needs to contain the sign extension of this value. In case 

of llValueLow being a value >= 0 llValueHigh can be 0, in case of llValueLow being a value < 0, llValueHigh has to 
be -1.

32 bit register write spcm_dwSetParam_d64 32 bit value needs to converted to double. Please make sure no to exceed the valid register range
64 bit register read spcm_dwGetParam_i32 If the internal register has a value that is inside the 32 bit integer range (-2G up to (2G - 1)) the value is returned 

normally. If the internal register exceeds this size an error code ERR_EXCEEDSINT32 is returned. As an example: 
reading back the installed memory will work as long as this memory is < 2 GByte. If the installed memory is >= 2 
GByte the function will return an error.

64 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer value in pllValue independent of the value of the internal register.
64 bit register read spcm_dwGetParam_i64m the internal value is split into a low and a high part. As long as the internal value is within the 32 bit range, the low 

part plValueLow contains the 32 bit value and the upper part plValueHigh can be ignored. If the internal value 
exceeds the 32 bit range it is absolutely necessary to take both value parts into account.

64 bit register read spcm_dwGetParam_d64 value is returned as 64 bit double in pdValue. Please note that double values are limited to 2^48. Any larger value 
is not returned with full precision.

64 bit register write spcm_dwSetParam_i32 the value to be written is limited to 32 bit range. If a value higher than the 32 bit range should be written, one of 
the other function types need to used.

64 bit register write spcm_dwSetParam_i64 the value has to be split into two parts. Be sure to fill the upper part lValueHigh with the correct sign extension even 
if you only write a 32 bit value as the driver every time interprets both parts of the function call.

64 bit register write spcm_dwSetParam_i64m the value can be written directly independent of the size.
64 bit register write spcm_dwSetParam_d64 the value need to be converted to double. Any value up to 2^48 can be written directly. Larger values need to be 

written using the _i64 function

uint32 _stdcall spcm_dwGetContBuf_i64 ( // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to read as listed above under SPCM_BUF_XXXX
    void**      ppvDataBuffer,          // address of available data buffer
    uint64*     pqwContBufLen);         // length of available continuous buffer

uint32 _stdcall spcm_dwGetContBuf_i64m (// Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to read as listed above under SPCM_BUF_XXXX
    void**      ppvDataBuffer,          // address of available data buffer
    uint32*     pdwContBufLenH,         // high part of length of available continuous buffer
    uint32*     pdwContBufLenL);        // low part of length of available continuous buffer



Software Driver functions

(c) Spectrum Instrumentation GmbH 53

These functions also only have effect on locally installed cards and are neither useful nor usable with any 
digitizerNETBOX or generatorNETBOX products, because no local kernel driver is involved in such a setup. 
For remote devices these functions will return a NULL pointer for the buffer and 0 Bytes in length.

Function spcm_dwDefTransfer
The spcm_dwDefTransfer function defines a buffer for a following data transfer. This function only defines the buffer, there is no data transfer 
performed when calling this function. Instead the data transfer is started with separate register commands that are documented in a later 
chapter. At this position there is also a detailed description of the function parameters.
Please make sure that all parameters of this function match. It is especially necessary that the buffer address is a valid address pointing to 
memory buffer that has at least the size that is defined in the function call. Please be informed that calling this function with non valid param-
eters may crash your system as these values are base for following DMA transfers.

The use of this function is described in greater detail in a later chapter.

Function spcm_dwDefTransfer

This function is available in two different formats as the spcm_dwGetParam and spcm_dwSetParam functions are. The background is the 
same. As long as you’re using a compiler that supports 64 bit integer values please use the _i64 function. Any other platform needs to use 
the _i64m function and split offset and length in two 32 bit words.

Example:

The example defines a data buffer of 8 kSamples of 16 bit integer values = 16 kByte (16384 byte) for a transfer from card to PC memory. 
As notify size is set to 0 we only want to get an event when the transfer has finished.

Function spcm_dwInvalidateBuf
The invalidate buffer function is used to tell the driver that the buffer that has been set with spcm_dwDefTransfer call is no longer valid. It is 
necessary to use the same buffer type as the driver handles different buffers at the same time. Call this function if you want to delete the buffer 
memory after calling the spcm_dwDefTransfer function. If the buffer already has been transferred after calling spcm_dwDefTransfer it is not 
necessary to call this function. When calling spcm_dwDefTransfer any previously defined buffer of this type is automatically invalidated.

Function spcm_dwInvalidateBuf

Function spcm_dwGetErrorInfo
The function returns complete error information on the last error that has occurred. The error handling itself is explained in a later chapter in 
greater detail. When calling this function please be sure to have a text buffer allocated that has at least ERRORTEXTLEN length. The error text 
function returns a complete description of the error including the register/value combination that has raised the error and a short description 
of the error details. In addition it is possible to get back the error generating register/value for own error handling. If not needed the buffers 
for register/value can be left to NULL.

Note that the timeout event (ERR_TIMEOUT) is not counted as an error internally as it is not locking the driver 
but as a valid event. Therefore the GetErrorInfo function won’t return the timeout event even if it had occurred 
in between. You can only recognize the ERR_TIMEOUT as a direct return value of the wait function that was 
called.

uint32 _stdcall spcm_dwDefTransfer_i64m(// Defines the transfer buffer by 2 x 32 bit unsigned integer 
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to define as listed above under SPCM_BUF_XXXX
    uint32      dwDirection,            // the transfer direction as defined above
    uint32      dwNotifySize,           // no. of bytes after which an event is sent (0=end of transfer) 
    void*       pvDataBuffer,           // pointer to the data buffer
    uint32      dwBrdOffsH,             // high part of offset in board memory (zero when using FIFO mode)
    uint32      dwBrdOffsL,             // low part of offset in board memory (zero when using FIFO mode)
    uint32      dwTransferLenH,         // high part of transfer buffer length
    uint32      dwTransferLenL);        // low part of transfer buffer length

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to define as listed above under SPCM_BUF_XXXX
    uint32      dwDirection,            // the transfer direction as defined above
    uint32      dwNotifySize,           // no. of bytes after which an event is sent (0=end of transfer) 
    void*       pvDataBuffer,           // pointer to the data buffer
    uint64      qwBrdOffs,              // offset for transfer in board memory (zero when using FIFO mode)
    uint64      qwTransferLen);         // buffer length

int16* pnBuffer = (int16*) pvAllocMemPageAligned (16384);
if (spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 0, (void*) pnBuffer, 0, 16384) != ERR_OK)
    printf (“DefTransfer failed\n”);

uint32 _stdcall spcm_dwInvalidateBuf (  // invalidate the transfer buffer 
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType);             // type of the buffer to invalidate as
                                        // listed above under SPCM_BUF_XXXX



Software Delphi (Pascal) Programming Interface

(c) Spectrum Instrumentation GmbH 54

Function spcm_dwGetErrorInfo

The function spcm_dwGetErrorInfo_i64 and spcm_dwGetErrorInfo_d64 have been added with driver release V 7.00

Example:

 

Delphi (Pascal) Programming Interface

Driver interface
The driver interface is located in the sub-directory d_header and contains the following files. The files need to be included in the delphi project 
and have to be put into the „uses“ section of the source files that will access the driver. Please do not edit any of these files as they’re regularly 
updated if new functions or registers have been included.

// for reading errors that occur during hOpen(), leave the drv_handle parameter NULL

uint32 _stdcall spcm_dwGetErrorInfo_i32 (
    drv_handle  hDevice,                // handle to an already opened device 
    uint32*     pdwErrorReg,            // address of the error register (can be NULL if not of interest)
    int32*      plErrorValue,           // address of the error value    (can be NULL if not of interest)
    char        pszErrorTextBuffer[ERRORTEXTLEN]); // text buffer for text error 

uint32 _stdcall spcm_dwGetErrorInfo_i64 (
    drv_handle  hDevice,                // handle to an already opened device
    uint32*     pdwErrorReg,            // address of the error register (can be NULL if not of interest)
    int64*      pllErrorValue,          // address of the error value    (can be NULL if not of interest)
    char        pszErrorTextBuffer[ERRORTEXTLEN]); // text buffer for text error 

uint32 _stdcall spcm_dwGetErrorInfo_d64 (
    drv_handle  hDevice,                // handle to an already opened device
    uint32*     pdwErrorReg,            // address of the error register (can be NULL if not of interest)
    double*     pdErrorValue,           // address of the error value    (can be NULL if not of interest)
    char        pszErrorTextBuffer[ERRORTEXTLEN]); // text buffer for text error 

char szErrorBuf[ERRORTEXTLEN];
if (spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -1))
    {
    spcm_dwGetErrorInfo_i64 (hDrv, NULL, NULL, szErrorBuf);
    printf (“Set of memsize failed with error message: %s\n”, szErrorBuf);
    }



Software Delphi (Pascal) Programming Interface

(c) Spectrum Instrumentation GmbH 55

file spcm_win32.pas
The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library 
are similar to the above explained standard driver functions:

The file also defines types used inside the driver and the examples. The types have similar names as used under C/C++ to keep the examples 
more simple to understand and allow a better comparison.

// ----- device handling functions -----
function spcm_hOpen (strName: pchar): int32; stdcall; external 'spcm_win32.dll' name '_spcm_hOpen@4';
procedure spcm_vClose (hDevice: int32); stdcall; external 'spcm_win32.dll' name '_spcm_vClose@4';

function spcm_dwGetErrorInfo_i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_i32@16'

function spcm_dwGetErrorInfo_i64 (hDevice: int32; var plErrorReg: int32; var pllErrorValue: int64; strError: 
PAnsiChar): uint32; stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_i64@16'

function spcm_dwGetErrorInfo_d64 (hDevice: int32; var plErrorReg: int32; var pdErrorValue: double; strError: 
PAnsiChar): uint32; stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_d64@16'

// ----- register access functions -----
function spcm_dwSetParam_i32 (hDevice, lRegister, lValue: int32): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i32@12';

function spcm_dwSetParam_i64 (hDevice, lRegister: int32; llValue: int64): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i64@16';

function spcm_dwSetParam_d64 (hDevice, lRegister: int32; dValue: double): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_d64@16';

function spcm_dwGetParam_i32 (hDevice, lRegister: int32; var plValue: int32): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i32@12';

function spcm_dwGetParam_i64 (hDevice, lRegister: int32; var pllValue: int64): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i64@12';

function spcm_dwGetParam_d64 (hDevice, lRegister: int32; var pdValue: double): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_d64@12';

// ----- data handling -----
function spcm_dwDefTransfer_i64 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer; 
llBrdOffs, llTransferLen: int64): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwDefTransfer_i64@36';

function spcm_dwInvalidateBuf (hDevice, lBuffer: int32): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwInvalidateBuf@8';



Software Delphi (Pascal) Programming Interface

(c) Spectrum Instrumentation GmbH 56

file spcm_win64.pas
The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library 
are similar to the above explained standard driver functions:

file SpcRegs.pas
The SpcRegs.pas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++ 
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is 
recommended to only use these constant names for better visibility of the programs:

file SpcErr.pas
The SpeErr.pas file contains all error codes that may be returned by the driver.

Including the driver files
To use the driver function and all the defined constants it is necessary to include the files into the project as 
shown in the picture on the right. The project overview is taken from one of the examples delivered on the 
USB stick. Besides including the driver files in the project it is also necessary to include them in the uses 
section of the source files where functions or constants should be used:

Examples
Examples for Delphi can be found on the USB stick in the directory /examples/delphi. The directory contains 
the above mentioned delphi header files and a couple of universal examples, each of them working with a certain type of card. Please feel 
free to use these examples as a base for your programs and to modify them in any kind.

// ----- device handling functions -----
function spcm_hOpen (strName: pchar): int32; stdcall; external 'spcm_win32.dll' name '_spcm_hOpen@4';
procedure spcm_vClose (hDevice: int32); stdcall; external 'spcm_win32.dll' name '_spcm_vClose@4';

function spcm_dwGetErrorInfo_i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_i32@16'

function spcm_dwGetErrorInfo_i64 (hDevice: int32; var plErrorReg: int32; var pllErrorValue: int64; strError: 
PAnsiChar): uint32; stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_i64@16'

function spcm_dwGetErrorInfo_d64 (hDevice: int32; var plErrorReg: int32; var pdErrorValue: double; strError: 
PAnsiChar): uint32; stdcall; external 'spcm_win32.dll' name '_spcm_dwGetErrorInfo_d64@16'

// ----- register access functions -----
function spcm_dwSetParam_i32 (hDevice, lRegister, lValue: int32): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i32@12';

function spcm_dwSetParam_i64 (hDevice, lRegister: int32; llValue: int64): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_i64@16';

function spcm_dwSetParam_d64 (hDevice, lRegister: int32; dValue: double): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwSetParam_d64@16';

function spcm_dwGetParam_i32 (hDevice, lRegister: int32; var plValue: int32): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i32@12';

function spcm_dwGetParam_i64 (hDevice, lRegister: int32; var pllValue: int64): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_i64@12';

function spcm_dwGetParam_d64 (hDevice, lRegister: int32; var pdValue: double): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwGetParam_d64@12';

// ----- data handling -----
function spcm_dwDefTransfer_i64 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer; 
llBrdOffs, llTransferLen: int64): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwDefTransfer_i64@36';

function spcm_dwInvalidateBuf (hDevice, lBuffer: int32): uint32; 
stdcall; external 'spcm_win32.dll' name '_spcm_dwInvalidateBuf@8';

const SPC_M2CMD                         = 100;                { write a command }
const     M2CMD_CARD_RESET              = $00000001;          { hardware reset    }
const     M2CMD_CARD_WRITESETUP         = $00000002;          { write setup only }
const     M2CMD_CARD_START              = $00000004;          { start of card (including writesetup) }
const     M2CMD_CARD_ENABLETRIGGER      = $00000008;          { enable trigger engine }
...

uses
  Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
  StdCtrls, ExtCtrls,

  SpcRegs, SpcErr, spcm_win32;

Image 38: Structure of the Delphi ex-
maples



Software .NET programming languages

(c) Spectrum Instrumentation GmbH 57

spcm_scope
The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the 
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample 
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

• Initialization of a card and reading of card information like type, function and serial number
• Doing a simple card setup
• Performing the acquisition and waiting for the end interrupt
• Reading of data, re-scaling it and displaying waveform on screen
 

 

.NET programming languages

Library
For using the driver with a .NET based language Spectrum delivers a special library that encapsulates the driver in a .NET object. By adding 
this object to the project it is possible to access all driver functions and constants from within your .NET environment.

There is one small console based example for each supported .NET language that shows how to include the driver and how to access the 
cards. Please combine this example with the different standard examples to get the different card functionality.

Declaration
The driver access methods and also all the type, register and error declarations are combined in the object Spcm and are located in one of 
the two DLLs either SpcmDrv32.NET.dll or SpcmDrv64.NET.dll delivered with the .NET examples.

For simplicity, either file is simply called „SpcmDrv.NET.dll“ in the following passages and the actual file 
name must be replaced with either the 32bit or 64bit version according to your application.

Spectrum also delivers the source code of the DLLs as a C# project. These sources are located in the directory SpcmDrv.NET.

Using C#
The SpcmDrv.NET.dll needs to be included within the Solution Explorer in the References section. Please use right mouse and select
„AddReference“. After this all functions and constants of the driver object are available.

Please see the example in the directory CSharp as a start:

namespace Spcm
    {
    public class Drv
        {
        [DllImport("spcm_win32.dll")]public static extern IntPtr spcm_hOpen (string szDeviceName);
        [DllImport("spcm_win32.dll")]public static extern void spcm_vClose  (IntPtr hDevice);
...
    public class CardType
        {
        public const int TYP_M2I2020                 = unchecked ((int)0x00032020);
        public const int TYP_M2I2021                 = unchecked ((int)0x00032021);
        public const int TYP_M2I2025                 = unchecked ((int)0x00032025);
...
    public class Regs
        {
        public const int SPC_M2CMD                   = unchecked ((int)100);
        public const int M2CMD_CARD_RESET            = unchecked ((int)0x00000001);
        public const int M2CMD_CARD_WRITESETUP       = unchecked ((int)0x00000002);
...

// ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0");
if ((int)hDevice == 0)
    {
    Console.WriteLine("Error: Could not open card\n");
    return 1;
    }

// ----- get card type -----
dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, out lCardType);
dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, out lSerialNumber);



Software .NET programming languages

(c) Spectrum Instrumentation GmbH 58

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

// ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR");



Software .NET programming languages

(c) Spectrum Instrumentation GmbH 59

 

Using Managed C++/CLI
The SpcmDrv.NET.dll needs to be included within the project options. Please select „Project“ - „Properties“ - „References“ and finally
„Add new Reference“. After this all functions and constants of the driver object are available.

Please see the example in the directory CppCLR as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

Using VB.NET
The SpcmDrv.NET.dll needs to be included within the project options. Please select „Project“ - „Properties“ - „References“ and finally
„Add new Reference“. After this all functions and constants of the driver object are available.

Please see the example in the directory VB.NET as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

Using J#
The SpcmDrv.NET.dll needs to be included within the Solution Explorer in the References section. Please use right mouse and select „AddRef-
erence“. After this all functions and constants of the driver object are available.

Please see the example in the directory JSharp as a start:

Example for digitizerNETBOX/generatorNETBOX and remotely installed cards:

 

// ----- open card -----
hDevice = Drv::spcm_hOpen("/dev/spcm0");
if ((int)hDevice == 0)
    {
    Console::WriteLine("Error: Could not open card\n");
    return 1;
    }

// ----- get card type -----
dwErrorCode = Drv::spcm_dwGetParam_i32(hDevice, Regs::SPC_PCITYP, lCardType);
dwErrorCode = Drv::spcm_dwGetParam_i32(hDevice, Regs::SPC_PCISERIALNR, lSerialNumber);

// ----- open remote card -----
hDevice = Drv::spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR");

' ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0")

If (hDevice = 0) Then
    Console.WriteLine("Error: Could not open card\n")
Else

    ' ----- get card type -----
    dwError = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, lCardType)
    dwError = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, lSerialNumber)

' ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR")

// ----- open card -----
hDevice = Drv.spcm_hOpen("/dev/spcm0");

if (hDevice.ToInt32() == 0)
    System.out.println("Error: Could not open card\n");
else
    {
    // ----- get card type -----
    dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCITYP, lCardType);
    dwErrorCode = Drv.spcm_dwGetParam_i32(hDevice, Regs.SPC_PCISERIALNR, lSerialNumber);

' ----- open remote card -----
hDevice = Drv.spcm_hOpen("TCPIP::192.168.169.14::INST0::INSTR")



Software Python Programming Interface and Examples

(c) Spectrum Instrumentation GmbH 60

Python Programming Interface and Examples

Driver interface
The driver interface contains the following files. The files need to be included in the python project. Please do not edit any of these files as 
they are regularly updated if new functions or registers have been included. To use pyspcm you need either python 2 (2.4, 2.6 or 2.7) or 
python 3 (3.x) and ctype, which is included in python 2.6 and newer and needs to be installed separately for Python 2.4.

file pyspcm.py
The file contains the interface to the driver library and defines some needed constants. All functions of the python library are similar to the 
above explained standard driver functions and use ctypes as input and return parameters:

file regs.py
The regs.py file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples. 
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended 
to only use these constant names for better readability of the programs:

file spcerr.py
The spcerr.py file contains all error codes that may be returned by the driver.

Examples
Examples for Python can be found on the USB stick in the directory /examples/python. The directory contains the above mentioned  header 
files and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs 
and to modify them in any kind.

When allocating the buffer for DMA transfers, use the following function to get a mutable character buffer:
ctypes.create_string_buffer(init_or_size[, size])

 

 

    # ----- Windows -----
    # Load DLL into memory.

    # use windll because all driver access functions use _stdcall calling convention under windows
    if (bIs64Bit == 1):
        spcmDll = windll.LoadLibrary ("spcm_win64.dll")
    else:
        spcmDll = windll.LoadLibrary ("spcm_win32.dll")

    # load spcm_hOpen
    if (bIs64Bit):
        spcm_hOpen = getattr(spcmDll, "spcm_hOpen")
    else:
        spcm_hOpen = getattr(spcmDll, "_spcm_hOpen@4")
    spcm_hOpen.argtype = [c_char_p]
    spcm_hOpen.restype = drv_handle

    # load spcm_vClose
    if (bIs64Bit):
        spcm_vClose = getattr(spcmDll, "spcm_vClose")
    else:
        spcm_vClose = getattr(spcmDll, "_spcm_vClose@4")
    spcm_vClose.argtype = [drv_handle]
    spcm_vClose.restype = None

    # load spcm_dwGetErrorInfo_i32
    if (bIs64Bit):
        spcm_dwGetErrorInfo_i32 = getattr(spcmDll, "spcm_dwGetErrorInfo_i32")
    else:
        spcm_dwGetErrorInfo_i32 = getattr(spcmDll, "_spcm_dwGetErrorInfo_i32@16")
    spcm_dwGetErrorInfo_i32.argtype = [drv_handle, uptr32, ptr32, c_char_p]
    spcm_dwGetErrorInfo_i32.restype = uint32

...

SPC_M2CMD = 100l                                   # write a command
M2CMD_CARD_RESET = 0x00000001l                     # hardware reset
M2CMD_CARD_WRITESETUP = 0x00000002l                # write setup only
M2CMD_CARD_START = 0x00000004l                     # start of card (including writesetup)
M2CMD_CARD_ENABLETRIGGER = 0x00000008l             # enable trigger engine
...



Software Java Programming Interface and Examples

(c) Spectrum Instrumentation GmbH 61

Java Programming Interface and Examples

Driver interface
The driver interface contains the following Java files (classes). The files need to be included in your Java project. Please do not edit any of 
these files as they are regularly updated if new functions or registers have been included. The driver interface uses the Java Native Access 
(JNA) library.

This library is licensed under the LGPL (https://www.gnu.org/licenses/lgpl-3.0.en.html) and has also to be included to your Java project.

To download the latest jna.jar package and to get more information about the JNA project please check the projects GitHub page under: 
https://github.com/java-native-access/jna

The following files can be found in the „SpcmDrv“ folder of your Java examples install path.

SpcmDrv32.java / SpcmDrv64.java
The files contain the interface to the driver library and defines some needed constants. All functions of the driver interface are similar to the 
above explained standard driver functions. Use the SpcmDrv32.java for 32 bit and the SpcmDrv64.java for 64 bit projects:

SpcmRegs.java
The SpcmRegs class defines all constants that are used for the driver. The constants names are the same names compared to the C/C++ 
examples. All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is 
recommended to only use these constant names for better readability of the programs:

SpcmErrors.java
The SpcmErrors class contains all error codes that may be returned by the driver.

Examples
Examples for Java can be found on the USB stick in the directory /examples/java. The directory contains the above mentioned  header files 
and some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs 
and to modify them in any kind.

 

 

...

public interface SpcmWin64 extends StdCallLibrary {

SpcmWin64 INSTANCE = (SpcmWin64)Native.loadLibrary (("spcm_win64"), SpcmWin64.class);

long spcm_hOpen (String sDeviceName);
void spcm_vClose (long hDevice);
int spcm_dwSetParam_i64 (long hDevice, int lRegister, long llValue);
int spcm_dwGetParam_i64 (long hDevice, int lRegister, LongByReference pllValue);
int spcm_dwSetParam_ptr (long hDevice, int lRegister, Pointer pValue, long llLen);
int spcm_dwGetParam_ptr (long hDevice, int lRegister, Pointer pValue, long llLen);
int spcm_dwSetParam_d64 (int hDevice, int lRegister, double dValue);
int spcm_dwGetParam_d64 (int hDevice, int lRegister, DoubleByReference pdValue);
int spcm_dwDefTransfer_i64 (long hDevice, int lBufType, int lDirection, int lNotifySize, Pointer pDataBuffer, 
long llBrdOffs, long llTransferLen);

int spcm_dwInvalidateBuf   (long hDevice, int lBufType);

int spcm_dwGetErrorInfo_i32 (long hDevice, IntByReference plErrorReg, IntByReference plErrorValue, Pointer sEr-
rorTextBuffer);

int spcm_dwGetErrorInfo_i64 (long hDevice, IntByReference plErrorReg, LongByReference pllErrorValue, Pointer 
sErrorTextBuffer);

int spcm_dwGetErrorInfo_d64 (long hDevice, IntByReference plErrorReg, DoubleByReference pdErrorValue, Pointer 
sErrorTextBuffer);
}
...

...

public static final int SPC_M2CMD = 100;
public static final int M2CMD_CARD_RESET = 0x00000001;
public static final int M2CMD_CARD_WRITESETUP = 0x00000002;
public static final int M2CMD_CARD_START = 0x00000004;
public static final int M2CMD_CARD_ENABLETRIGGER = 0x00000008;
...



Software Julia Programming Interface and Examples

(c) Spectrum Instrumentation GmbH 62

Julia Programming Interface and Examples

Driver interface
The driver interface contains the following files. The files need to be included in the julia project. Please do not edit any of these files as they 
are regularly updated if new functions or registers have been included.

file spcm_drv.jl
The file contains the interface to the driver library and defines some needed constants. All functions of the Julia library are similar to the above 
explained standard driver functions.

file regs.jl
The regs.jl file defines all constants that are used for the driver. The constant names are the same names compared to the C/C++ examples. 
All constant names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is recommended 
to only use these constant names for better readability of the programs:

file spcerr.jl
The spcerr.jl file contains all error codes that may be returned by the driver.

Examples
Examples for Julia can be found on USB-Stick in the directory /examples/julia. The directory contains the above mentioned include files and 
some examples, each of them working with a certain type of card. Please feel free to use these examples as a base for your programs and 
to modify them in any kind.

  

hDevice::Int64 = spcm_hOpen(sDeviceName::String)
Cvoid spcm_vClose(hDevice::Int64)

dwErr::UInt32, lValue::Int32  = spcm_dwGetParam_i32(hDevice::Int64, lRegister::Int32)
dwErr::UInt32, llValue::Int64 = spcm_dwGetParam_i64(hDevice::Int64, lRegister::Int32)
dwErr::UInt32, dValue::Float64 = spcm_dwGetParam_d64(hDevice::Int64, lRegister::Int32)

dwErr::UInt32 = spcm_dwSetParam_i32(hDevice::Int64, lRegister::Int32 ,lValue::Int32)
dwErr::UInt32 = spcm_dwSetParam_i64(hDevice::Int64, lRegister::Int32, llValue::Int64)
dwErr::UInt32 = spcm_dwSetParam_d64(hDevice::Int64, lRegister::Int32, dValue::Float64)

dwErr::UInt32 = spcm_dwDefTransfer_i64(hDevice::Int64, lBufType::Int32, lDirection::Int32,
                                       dwNotifySize::UInt32, pDataBuffer::Array{Int16,1},
                                       qwBrdOffs::UInt64, qwTransferLen::UInt64)

dwErr::UInt32 = spcm_dwDefTransfer_i64(hDevice::Int64, lBufType::Int32, lDirection::Int32,
                                       dwNotifySize::UInt32, pDataBuffer::Array{Int8,1},
                                       qwBrdOffs::UInt64, qwTransferLen::UInt64)

dwErr::UInt32 = spcm_dwInvalidateBuf(hDevice::Int64, lBufType::Int32)

dwErr::UInt32, dwErrReg::UInt32, lErrVal::Int32, sErrText::String = spcm_dwGetErrorInfo_i32(hDevice::Int64)
dwErr::UInt32, dwErrReg::UInt32, llErrVal::Int64, sErrText::String = spcm_dwGetErrorInfo_i64(hDevice::Int64)
dwErr::UInt32, dwErrReg::UInt32, dErrVal::Float64, sErrText::String = spcm_dwGetErrorInfo_d64(hDevice::Int64)

const SPC_M2CMD                    = Int32(100)                # write a command
const     M2CMD_CARD_RESET             = Int32(1) # 0x00000001 # hardware reset   
const     M2CMD_CARD_WRITESETUP        = Int32(2) # 0x00000002 # write setup only
const     M2CMD_CARD_START             = Int32(4) # 0x00000004 # start of card (including writesetup)
const     M2CMD_CARD_ENABLETRIGGER     = Int32(8) # 0x00000008 # enable trigger engine
# ...



Software LabVIEW driver and examples

(c) Spectrum Instrumentation GmbH 63

LabVIEW driver and examples
A full set of drivers and examples is available for LabVIEW for Windows. Lab-
VIEW for Linux is currently not supported. The LabVIEW drivers have their own 
manual. The LabVIEW drivers, examples and the manual are found on the USB 
stick that has been included in the delivery. The latest version is also available on 
our webpage www.spectrum-instrumentation.com

Please follow the description in the LabVIEW manual for installation and useage 
of the LabVIEW drivers for this card.

 

MATLAB driver and examples
A full set of drivers and examples is available for Mathworks MATLAB for Windows (32 bit 
and 64 bit versions) and also for MATLAB for Linux (64 bit version). There is no additional 
toolbox needed to run the MATLAB examples and drivers.

The MATLAB drivers have their own manual. The MATLAB drivers, examples and the manual 
are found on the USB stick that has been included in the delivery. The latest version is also 
available on our webpage www.spectrum-instrumentation.com

Please follow the description in the MATLAB manual for installation and useage of the
MATLAB drivers for this card.

 

Image 39: LabVIEW driver oscilloscope example

Image 40: Spectrum MATLAB driver structure



Software SCAPP – CUDA GPU based data processing

(c) Spectrum Instrumentation GmbH 64

SCAPP – CUDA GPU based data processing

Spectrum’s CUDA Access for Parallel Processing
Modern GPUs (Graphic Processing Units) are de-
signed to handle a large number of parallel opera-
tions. While a CPU offers only a few cores for 
parallel calculations, a GPU can offer thousands of 
cores. This computing capabilities can be used for 
calculations using the Nvidia CUDA interface. 
Since bus bandwidth and CPU power are often a 
bottleneck in calculations, CUDA Remote Direct 
Memory Access (RDMA) can be used to directly transfer data from/to a Spectrum Digitizer/Generator to/from a GPU card for processing, 
thus avoiding the transfer of raw data to the host memory and benefiting from the computational power of the GPU.

 For applications requiring high performance signal and data processing Spectrum of-
fers SCAPP (Spectrum’s CUDA Access for Parallel Processing).
The SCAPP SDK allows a direct link between Spectrum digitizers or generators and 
CUDA based GPU cards. Once data is available to the GPU, users can harness the pro-
cessing power of the GPU’s massive number of processing cores and large, ultra-high-
speed GPU memory. SCAPP uses an RDMA (Linux only) process to send data at the dig-
itizers full PCIe transfer speed to the GPU card. The SDK includes a set of examples for 
interaction between the digitizer or generator and the GPU card and another set of 
CUDA parallel processing examples with easy building blocks for basic functions like 
filtering, averaging, data de-multiplexing, data conversion or FFT. All the software is 
based on C/C++ and can easily be implemented, expanded and modified with normal 
programming skills.

Please follow the description in the SCAPP manual for installation and usage of the SCAPP drivers for this card.

 

Image 41: GPU usage with SCAPP SDK: data transfer options



Programming the Board Overview

(c) Spectrum Instrumentation GmbH 65

Programming the Board

Overview
The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For 
the examples we focused on Visual C++. However as shown in the last chapter the differences in programming the board under different 
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar 
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which 
settings are valid for your special kind of board.

Register tables
The programming of the boards is totally software register based. All software registers are described in the following form:

If no constants are given below the register table, the dedicated register is used as a switch. All such registers 
are activated if written with a “1“ and deactivated if written with a “0“.

Programming examples
In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within 
your own program. All of the examples are located in a separated colored box to indicate the example and to make it easier to differ it from 
the describing text.

All of the examples mentioned throughout the manual are written in C/C++ and can be used with any C/C++ compiler for Windows or Linux. 

Table 7: Spectrum API: Command register and basic commands

Register Value Direction Description

SPC_M2CMD 100 w Command register of the board.

M2CMD_CARD_START 4h Starts the board with the current register settings.

M2CMD_CARD_STOP 40h Stops the board manually.

The name of the software regis-
ter as found in the regs.h file. 
These Mnemonics should be 
used to increase readability.

The decimal value of the software register. 
Also found in the regs.h file. This value must 
be used with all programs or compilers that 
cannot use the header file directly. 

Describes whether 
the register can be 
read (r) and/or writ-
ten (w).

Short description of the function-
ality of the register. A more de-
tailed description is found 
above or below the register ta-
bles. 

Any constants that can be used to 
program the register directly are 
shown inserted beneath the register 
table.

The decimal or hexadecimal value of the 
constant, also found in the regs.h file. Hex-
adecimal values are indicated with an „h“ 
at the end. This value must be used with all 
programs or compilers that cannot use the 
header file directly. 

Short description of 
the use of this con-
stant.



Programming the Board Initialization

(c) Spectrum Instrumentation GmbH 66

Complete C/C++ Example

Initialization
Before using the card it is necessary to open the kernel device to access the hardware. It is only possible to use every device exclusively using 
the handle that is obtained when opening the device. Opening the same device twice will only generate an error code. After ending the 
driver use the device has to be closed again to allow later re-opening. Open and close of driver is done using the spcm_hOpen and spcm_v-
Close function as described in the “Driver Functions” chapter before.

Open/Close Example

Initialization of Remote Products
The only step that is different when accessing remotely controlled cards or digitizerNETBOXes is the initialization of the driver. Instead of the 
local handle one has to open the VISA string that is returned by the discovery function. Alternatively it is also possible to access the card 
directly without discovery function if the IP address of the device is known.

Multiple cards are opened by indexing the remote card number:

Error handling
If one action caused an error in the driver this error and the register and value where it occurs will be saved.

#include “../c_header/dlltyp.h”
#include “../c_header/regs.h”
#include “../c_header/spcm_drv.h”

#include <stdio.h>

int main()
    {
    drv_handle hDrv;                                             // the handle of the device
    int32 lCardType;                                             // a place to store card information

    hDrv = spcm_hOpen ("/dev/spcm0");                            // Opens the board and gets a handle
    if (!hDrv)                                                   // check whether we can access the card
        return -1;
    
    spcm_dwGetParam_i32 (hDrv, SPC_PCITYP,  &lCardType);         // simple command, read out of card type
    printf (“Found card M2i/M3i/M4i/M4x/M2p/M5i.%04x in the system\n”, lCardType & TYP_VERSIONMASK);
    spcm_vClose (hDrv);

    return 0;
    }

drv_handle hDrv;                                             // the handle of the device

hDrv = spcm_hOpen ("/dev/spcm0");                            // Opens the board and gets a handle
if (!hDrv)                                                   // check whether we can access the card
    {
    printf “Open failed\n”);    
    return -1;
    }

... do any work with the driver

spcm_vClose (hDrv);
return 0;

drv_handle hDrv;                                             // the handle of the device

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR");          // Opens the remote board and gets a handle
if (!hDrv)                                                   // check whether we can access the card
    {
    printf “Open of remote card failed\n”);    
    return -1;
    }

... 

hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INSTR");             // Opens the remote board #0
                                                                // or alternatively   
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST0::INSTR");      // Opens the remote board #0
                                                                // all other boards require an index:
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST1::INSTR");      // Opens the remote board #1
hDrv = spcm_hOpen ("TCPIP::192.168.169.14::INST2::INSTR");      // Opens the remote board #2



Programming the Board Gathering information from the card

(c) Spectrum Instrumentation GmbH 67

The driver is then locked until the error is read out using the error function spcm_dwGetErrorInfo_i32. Any 
calls to other functions will just return the error code ERR_LASTERR showing that there is an error to be read 
out.

This error locking functionality will prevent the generation of unseen false commands and settings that may lead to totally unexpected behav-
ior. For sure there are only errors locked that result on false commands or settings. Any error code that is generated to report a condition to 
the user won’t lock the driver. As example the error code ERR_TIMEOUT showing that the a timeout in a wait function has occurred won’t 
lock the driver and the user can simply react to this error code without reading the complete error function.

As a benefit from this error locking it is not necessary to check the error return of each function call but just checking the error function once 
at the end of all calls to see where an error occurred. The enhanced error function returns a complete error description that will lead to the 
call that produces the error.

Example for error checking at end using the error text from the driver:

This short program then would generate a printout as:

All error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message.

Any of the parameters of the spcm_dwGetErrorInfo_i32 function can be used to obtain detailed information on the error. If one is not interested 
in parts of this information it is possible to just pass a NULL (zero) to this variable like shown in the example. If one is not interested in the 
error text but wants to install its own error handler it may be interesting to just read out the error generating register and value.

Example for error checking with own (simple) error handler:

   

Gathering information from the card
When opening the card the driver library internally reads out a lot of information from the on-board eeprom. The driver also offers additional 
information on hardware details. All of this information can be read out and used for programming and documentation. This chapter will 
show all general information that is offered by the driver. There is also some more information on certain parts of the card, like clock machine 
or trigger machine, that is described in detail in the documentation of that part of the card.

All information can be read out using one of the spcm_dwGetParam functions. Please stick to the “Driver Functions” chapter for more details 
on this function.

char szErrorText[ERRORTEXTLEN];

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000);                        // correct command
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -345);                              // faulty command
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024);                          // correct command
if (spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorText) != ERR_OK)      // check for an error
    {
    printf (szErrorText);                                                   // print the error text
    spcm_vClose (hDrv);                                                     // close the driver
    exit (0);                                                               // and leave the program
    }

Error ocurred at register SPC_MEMSIZE with value -345: value not allowed

uint32 dwErrorReg;
int32  lErrorValue;
uint32 dwErrorCode;

spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE, 1000000);                        // correct command
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, -345);                              // faulty command
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 1024);                          // correct command
dwErrorCode = spcm_dwGetErrorInfo_i32 (hDrv, &dwErrorReg, &lErrorValue, NULL);
if (dwErrorCode)                                                            // check for an error
    {
    printf (“Errorcode: %d in register %d at value %d\n”, lErrorCode, dwErrorReg, lErrorValue);
    spcm_vClose (hDrv);                                                     // close the driver
    exit (0);                                                               // and leave the program
    }



Programming the Board Gathering information from the card

(c) Spectrum Instrumentation GmbH 68

Card type
The card type information returns the specific card type that is found under this device. When using multiple cards in one system it is highly 
recommended to read out this register first to examine the ordering of cards. Please don’t rely on the card ordering as this is based on the 
BIOS, the bus connections and the operating system. 

The SPC_PCITYP register can be used to read the numeric card type as well as a full name of the card using the spcm_dwGetParam_ptr 
function:

One of the following values is returned, when reading this register. Each card has its own card type constant defined in regs.h. Please note 
that when reading the card information as a hex value, the lower word shows the digits of the card name while the upper word is a indication 
for the used bus type.

 .

 

Hardware and PCB version
Since all of the boards from Spectrum are modular boards, they consist of one base board and one piggy-back front-end module and even-
tually of an extension module like the star-hub. Each of these three kinds of hardware has its own version register. Normally you do not need 
this information but if you have a support question, please provide the revision together with it.

If your board has an additional piggy-back extension module mounted you can get the hardware version with the following register.

Table 8: Spectrum API: Card Type Register

Register Value Direction Description

SPC_PCITYP 2000 read Type of board as listed in the table below.

// read out the numeric card type as shown in the list below
spcm_dwGetParam_i32 (hDrv, SPC_PCITYP,  &lCardType);

// read out the official name of the card
char acCardType[20] = {};
spcm_dwGetParam_ptr (hCard, SPC_PCITYP, acCardType, sizeof (acCardType));

// printout both information:
printf ("Found: %s (decimal: %d)\n", acCardType, lCardType);

Table 9: available models and decimal and hexadecimal value of model

Card type Card type
as defined in 
regs.h

Value 
hexadecimal

Value
decimal

M5i.3321-x16 TYP_M5I3321_X16 A3321h 668449

M5i.3330-x16 TYP_M5I3330_X16 A3330h 668464

M5i.3337-x16 TYP_M5I3337_X16 A3337h 668471

M5i.3350-x16 TYP_M5I3350_X16 A3350h 668496

M5i.3357-x16 TYP_M5I3357_X16 A3357h 668503

M5i.3360-x16 TYP_M5I3360_X16 A3360h 668512

M5i.3367-x16 TYP_M5I3367_X16 A3367h 668519

Table 10: Spectrum API: hardware and PCB version register overview

Register Value Direction Description

SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware version, the lower 16 bit show the firmware 
version.

SPC_BASEPCBVERSION 2014 read Base card PCB version: the lower 16 bit are divided into two 8 bit values containing pre/post deci-
mal point version information. For example a lower 16 bit value of 0106h represents a PCB version 
V1.6. The upper 16 bit are always zero.

SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware version, the lower 16 bit show the firmware ver-
sion.

SPC_MODULEPCBVERSION 2015 read Module PCB version: the lower 16 bit are divided into two 8 bit values containing pre/post decimal 
point version information. For example a lower 16 bit value of 0106h represents a PCB version 
V1.6. The upper 16 bit are always zero.

Table 11: Spectrum API: extension module hardware and PCB version register

Register Value Direction Description

SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware version, the lower 16 bit show the 
firmware version.

SPC_EXTPCBVERSION 2017 read Extension module PCB version: the lower 16 bit are divided into two 8 bit values containing pre/post 
decimal point version information. For example a lower 16 bit value of 0106h represents a PCB ver-
sion V1.6. The upper 16 bit are always zero.



Programming the Board Gathering information from the card

(c) Spectrum Instrumentation GmbH 69

Reading currently used PXI slot No. (M4x only)
For the PXIe cards of the M4x.xxxx series it is possible to read out the current slot number, in which the card is installed within the chassis:

 

 

Firmware versions
All the cards from Spectrum typically contain multiple programmable devices such as FPGAs, CPLDs and the like. Each of these have their 
own dedicated firmware version. This version information is readable for each device through the various version registers. Normally you do 
not need this information but if you have a support question, please provide us with this information. Please note that number of devices and 
hence the readable firmware information is card series dependent:

 Cards that do provide a golden recovery image for the main control FPGA, the currently booted firmware can additionally read out:

  

Production date
This register informs you about the production date, which is returned as one 32 bit long word. The lower word is holding the information 
about the year, while the upper word informs about the week of the year.

Table 12: Spectrum API: register for reading back the PXIe card slot number

Register Value Direction Description

SPC_PXIHWSLOTNO 2055 read Returns the currently used slot number of the chassis. 

Table 13: Spectrum API: Register overview of firmware versions

Register Value Direction Description Available for

M2i M3i M4i M4x M2p M5i

SPCM_FW_CTRL 210000 read Main control FPGA version: the upper 16 bit show the firmware 
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

X X X X X X

SPCM_FW_CTRL_GOLDEN 210001 read Main control FPGA golden version: the upper 16 bit show the 
firmware type, the lower 16 bit show the firmware version. For 
the golden (recovery) firmware, the type has always a value of 
2.

— — X X X X

SPCM_FW_CLOCK 210010 read Clock distribution version: the upper 16 bit show the firmware 
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

X — — — — —

SPCM_FW_CONFIG 210020 read Configuration controller version: the upper 16 bit show the firm-
ware type, the lower 16 bit show the firmware version. For the 
standard release firmware, the type has always a value of 1.

X X — — — —

SPCM_FW_MODULEA 210030 read Front-end module A version: the upper 16 bit show the firmware 
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

X X X X X —

SPCM_FW_MODULEB 210031 read Front-end module B version: the upper 16 bit show the firmware 
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.
The version is zero if no second front-end module is installed on 
the card. 

X — — — X —

SPCM_FW_MODEXTRA 210050 read Extension module (Star-Hub) version: the upper 16 bit show the 
firmware type, the lower 16 bit show the firmware version. For 
the standard release firmware, the type has always a value of 1.
The version is zero if no extension module is installed on the 
card. 

X X X — X X

SPCM_FW_POWER 210060 read Power controller version: the upper 16 bit show the firmware 
type, the lower 16 bit show the firmware version. For the stand-
ard release firmware, the type has always a value of 1.

— — X X X X

Table 14: Spectrum API: Register overview of reading current firmware

Register Value Direction Description

M2i M3i M4i M4x M2p M5i

SPCM_FW_CTRL_ACTIVE 210002 read Cards that do provide a golden (recovery) firmware additionally 
have a register to read out the version information of the cur-
rently loaded firmware version string, to determine if it is stand-
ard or golden.

The hexadecimal 32bit format is: TVVVUUUUh

T: the currently booted type (1: standard, 2: golden)
V: the version
U: unused, in production versions always zero

— — X X X X

Table 15: Spectrum API: production date register

Register Value Direction Description

SPC_PCIDATE 2020 read Production date: week in bits 31 to 16, year in bits 15 to 0



Programming the Board Gathering information from the card

(c) Spectrum Instrumentation GmbH 70

The following example shows how to read out a date and how to interpret the value:

Last calibration date (analog cards only)
This register informs you about the date of the last factory calibration. When receiving a new card this date is similar to the delivery date 
when the production calibration is done. When returning the card to calibration this information is updated. This date is not updated when 
the user does an on-board calibration. The date is returned as one 32 bit long word. The lower word is holding the information about the 
year, while the upper word informs about the week of the year.

Serial number
This register holds the information about the serial number of the board. This number is unique and should always be sent together with a 
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with 
the exact same board.

Maximum possible sampling rate
This register gives you the maximum possible sampling rate the board can run. The information provided here does not consider any restric-
tions in the maximum speed caused by special channel settings. For detailed information about the correlation between the maximum sam-
pling rate and the number of activated channels please refer to the according chapter.

Installed memory
This register returns the size of the installed on-board memory in bytes as a 64 bit integer value. If you want to know the amount of samples 
you can store, you must regard the size of one sample of your card. All 7 bit and 8 bit A/D and D/A cards use only one byte per sample, 
while all other A/D and D/A cards with 12, 14 and 16 bit resolution use two bytes to store one sample. All digital cards need one byte to 
store 8 data bits.

The following example is written for a „two bytes“ per sample card (12, 14 or 16 bit board), on any 8 bit card memory in MSamples is 
similar to memory in MBytes.

Installed features and options
The SPC_PCIFEATURES register informs you about the features, that are installed on the board. If you want to know about one option being 
installed or not, you need to read out the 32 bit value and mask the interesting bit. In the table below you will find every feature that may be 
installed on a M2i/M3i/M4i/M4x/M2p/M5i card. Please refer to the ordering information to see which of these features are available for 
your card series.

spcm_dwGetParam_i32 (hDrv, SPC_PCIDATE,     &lProdDate);
printf ("Production: week &d of year &d\n“, (lProdDate >> 16) & 0xffff, lProdDate & 0xffff);

Table 16: Spectrum API: calibration date register

Register Value Direction Description

SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to 16, year in bit 15 to 0

Table 17: Spectrum API: hardware serial number register

Register Value Direction Description

SPC_PCISERIALNO 2030 read Serial number of the board

Table 18: Spectrum API: maximum sampling rate register

Register Value Direction Description

SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 64 bit integer value

Table 19: Spectrum API: installed memory registers. 32 bit read is limited to a maximum of 1 GByte

Register Value Direction Description

SPC_PCIMEMSIZE 2110 read _i32 Installed memory in bytes as a 32 bit integer value. Maximum return value will 1 GByte. If more mem-
ory is installed this function will return the error code ERR_EXCEEDINT32.

SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value

spcm_dwGetParam_i64 (hDrv, SPC_PCIMEMSIZE,     &llInstMemsize);
printf ("Memory on card: %d MBytes\n", (int32) (llInstMemsize /1024/1024));
printf ("              : %d MSamples\n", (int32) (llInstMemsize /1024/1024/2));

Table 20: Spectrum API: Feature Register and available feature flags

Register Value Direction Description

SPC_PCIFEATURES 2120 read PCI feature register. Holds the installed features and options as a bitfield. The read value must be 
masked out with one of the masks below to get information about one certain feature.

SPCM_FEAT_MULTI 1h Is set if the feature Multiple Recording / Multiple Replay is available.

SPCM_FEAT_GATE 2h Is set if the feature Gated Sampling / Gated Replay is available.

SPCM_FEAT_DIGITAL 4h Is set if the feature Digital Inputs / Digital Outputs is available.



Programming the Board Gathering information from the card

(c) Spectrum Instrumentation GmbH 71

The following example demonstrates how to read out the information about one feature.

The following example demonstrates how to read out the custom modification code.

Installed extended Options and Features
Some cards (such as M5i/M4i/M4x/M2p cards) can have advanced features and options installed. This can be read out with the following 
register:

Miscellaneous Card Information
Some more detailed card information, that might be useful for the application to know, can be read out with the following registers: 

SPCM_FEAT_TIMESTAMP 8h Is set if the feature Timestamp is available.

SPCM_FEAT_STARHUB6_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 6 cards (M2p).

SPCM_FEAT_STARHUB8_EXTM 20h Is set on the card, that carries the star-hub extension or piggy-back module for synchronizing up to 8 cards (M4i).

SPCM_FEAT_STARHUB4 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 4 cards (M3i).

SPCM_FEAT_STARHUB5 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards (M2i).

SPCM_FEAT_STARHUB16_EXTM 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2p).

SPCM_FEAT_STARHUB8 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 8 cards (M3i and M5i).

SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards (M2i).

SPCM_FEAT_ABA 80h Is set if the feature ABA mode is available.

SPCM_FEAT_BASEXIO 100h Is set if the extra BaseXIO option is installed. The lines can be used for asynchronous digital I/O, extra trigger or 
timestamp reference signal input.

SPCM_FEAT_AMPLIFIER_10V 200h Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card.

SPCM_FEAT_STARHUBSYSMASTER 400h Is set in the card that carries a System Star-Hub Master card to connect multiple systems (M2i).

SPCM_FEAT_DIFFMODE 800h M2i.30xx series only: card has option -diff installed for combining two SE channels to one differential channel.

SPCM_FEAT_SEQUENCE 1000h Only available for output cards or I/O cards: Replay sequence mode available.

SPCM_FEAT_AMPMODULE_10V 2000h Is set on the card that has a special amplifier module for mounted (M2i.60xx/61xx only).

SPCM_FEAT_STARHUBSYSSLAVE 4000h Is set in the card that carries a System Star-Hub Slave module to connect with System Star-Hub master systems (M2i).

SPCM_FEAT_NETBOX 8000h The card is physically mounted within a digitizerNETBOX, generatorNETBOX or hybridNETBOX. 

SPCM_FEAT_REMOTESERVER 10000h Support for the Spectrum Remote Server option is installed on this card.

SPCM_FEAT_SCAPP 20000h Support for the SCAPP option allowing CUDA RDMA access to supported graphics cards for GPU calculations
(M5i, M4i and M2p)

SPCM_FEAT_DIG16_SMB 40000h M2p: Set if option M2p.xxxx-DigSMB is installed, adding16 additional digital I/Os via SMB connectors.

SPCM_FEAT_DIG16_FX2 80000h M2p: Set if option M2p.xxxx-DigFX2 is installed, adding16 additional digital I/Os via FX2 multipin connectors.

SPCM_FEAT_DIGITALBWFILTER 100000h A digital (boxcar) bandwidth filter is available that can be globally enabled/disabled for all channels.

SPCM_FEAT_CUSTOMMOD_MASK F0000000h The upper 4 bit of the feature register is used to mark special custom modifications. This is only used if the card has 
been specially customized. Please refer to the extra documentation for the meaning of the custom modifications. 
(M2i/M3i). For M5i, M4i, M4x and M2p cards see „Custom modifications“ chapter instead.

spcm_dwGetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
if (lFeatures & SPCM_FEAT_DIGITAL)
    printf("Option digital inputs/outputs is installed on your card");

spcm_dwGetParam_i32 (hDrv, SPC_PCIFEATURES, &lFeatures);
lCustomMod = (lFeatures >> 28) & 0xF;
if (lCustomMod != 0)
    printf("Custom modification no. %d is installed.", lCustomMod);

Table 21: Spectrum API: Extended feature register and available extended feature flags

Register Value Direction Description

SPC_PCIEXTFEATURES 2121 read PCI extended feature register. Holds the installed extended features and options as a bitfield. The 
read value must be masked out with one of the masks below to get information about one certain fea-
ture.

SPCM_FEAT_EXTFW_SEGSTAT 1h Is set if the firmware option „Block Statistics“ is installed on the board, which allows certain statistics to be on-board 
calculated for data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_SEGAVERAGE 2h Is set if the firmware option „Block Average“ is installed on the board, which allows on-board hardware averaging of 
data being recorded in segmented memory modes, such as Multiple Recording or ABA.

SPCM_FEAT_EXTFW_BOXCAR 4h Is set if the firmware mode „Boxcar Average“ is supported in the installed firmware version.

SPCM_FEAT_EXTFW_PULSEGEN 8h Is set if the firmware mode “Pulse Generator” is installed on the board, which allows generation of pulses for output 
on the card’s multi-purpose I/O lines (XIO).

Table 22: Spectrum API: register overview of miscellaneous cards information

Register Value Direction Description

SPC_MIINST_MODULES 1100 read Number of the installed front-end modules on the card.

SPC_MIINST_CHPERMODULE 1110 read Number of channels installed on one front-end module.

SPC_MIINST_BYTESPERSAMPLE 1120 read Number of bytes used in memory by one sample. 

SPC_MIINST_BITSPERSAMPLE 1125 read Resolution of the samples in bits.

SPC_MIINST_MAXADCVALUE 1126 read Decimal code of the full scale value.

SPC_MIINST_MINEXTCLOCK 1145 read Minimum external clock that can be fed in for direct external clock (if available for card model).



Programming the Board Gathering information from the card

(c) Spectrum Instrumentation GmbH 72

Function type of the card
This register register returns the basic type of the card:

Used type of driver
This register holds the information about the driver that is actually used to access the board. Although the driver interface doesn’t differ be-
tween Windows and Linux systems it may be of interest for a universal program to know on which platform it is working.

Driver version
This register holds information about the currently installed driver library. As the drivers are permanently improved and maintained and new 
features are added user programs that rely on a new feature are requested to check the driver version whether this feature is installed. 

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Kernel Driver version
This register informs about the actually used kernel driver. Windows users can also get this information from the device manager. Please refer 
to the „Driver Installation“ chapter. On Linux systems this information is also shown in the kernel message log at driver start time.

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

The following example demonstrates how to read out the kernel and library version and how to print them.

SPC_MIINST_MAXEXTCLOCK 1146 read Maximum external clock that can be fed in for direct external clock (if available for card model).

SPC_MIINST_MINEXTREFCLOCK 1148 read Minimum external clock that can be fed in as a reference clock.

SPC_MIINST_MAXEXTREFCLOCK 1149 read Maximum external clock that can be fed in as a reference clock.

SPC_MIINST_ISDEMOCARD 1175 read Returns a value other than zero, if the card is a demo card.

Table 23: Spectrum API: register card function type and possible types

Register Value Direction Description

SPC_FNCTYPE 2001 read Gives information about what type of card it is.

SPCM_TYPE_AI 1h Analog input card (analog acquisition; the M2i.4028 and M2i.4038 also return this value)

SPCM_TYPE_AO 2h Analog output card (arbitrary waveform generators)

SPCM_TYPE_DI 4h Digital input card (logic analyzer card)

SPCM_TYPE_DO 8h Digital output card (pattern generators)

SPCM_TYPE_DIO 10h Digital I/O (input/output) card, where the direction is software selectable.

Table 24: Spectrum API: register driver type information and possible driver types

Register Value Direction Description

SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used

DRVTYP_LINUX32 1 Linux 32bit driver is used

DRVTYP_WDM32 4 Windows WDM 32bit driver is used (XP/Vista/Windows 7/8/10/11).

DRVTYP_WDM64 5 Windows WDM 64bit driver is used by 64bit application (XP64/Vista/Windows 7/8/10/11).

DRVTYP_WOW64 6 Windows WDM 64bit driver is used by 32bit application (XP64/Vista/Windows 7/8/10/11).

DRVTYP_LINUX64 7 Linux 64bit driver is used

Table 25: Spectrum API: driver version read register

Register Value Direction Description

SPC_GETDRVVERSION 1200 read Gives information about the driver library version

Driver Major Version Driver Minor Version Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit 0 to bit 15

Table 26: Spectrum API: kernel driver version read register

Register Value Direction Description

SPC_GETKERNELVERSION 1210 read Gives information about the kernel driver version.

Driver Major Version Driver Minor Version Driver Build

8 Bit wide: bit 24 to bit 31 8 Bit wide, bit 16 to bit 23 16 Bit wide, bit 0 to bit 15

spcm_dwGetParam_i32 (hDrv, SPC_GETDRVVERSION,    &lLibVersion);
spcm_dwGetParam_i32 (hDrv, SPC_GETKERNELVERSION, &lKernelVersion);
printf("Kernel V %d.%d build %d\n”,lKernelVersion >> 24, (lKernelVersion >> 16) & 0xff, lKernelVersion & 0xffff);
printf("Library V %d.%d build %d\n”,lLibVersion >> 24, (lLibVersion >> 16) & 0xff, lLibVersion & 0xffff);

Table 22: Spectrum API: register overview of miscellaneous cards information

Register Value Direction Description



Programming the Board Reset

(c) Spectrum Instrumentation GmbH 73

This small program will generate an output like this:

   

Custom modifications
Since all of the boards from Spectrum are modular boards, they consist of one base board and one piggy-back front-end module and even-
tually of an extension module like the Star-Hub. Each of these three kinds of hardware has its own version register. Normally you do not need 
this information but if you have a support question, please provide the revision together with it.

   

Reset
Every Spectrum card can be reset by software. Concerning the hardware, this reset is the same as the power-on reset when starting the host 
computer. In addition to the power-on reset, the reset command also brings all internal driver settings to a defined default state. A software 
reset is automatically performed, when the driver is first loaded after starting the host system.

Performing a board reset can be easily done by the related board command mentioned in the following table.

  

Kernel V 1.11 build 817
Library V 1.1 build 854

Table 27: Spectrum API: custom modification register and different bitmasks to split the register in various hardware parts

Register Value Direction Description

SPCM_CUSTOMMOD 3130 read Dedicated feature register used to mark special custom modifications of the base card and/or the 
front-end module and/or the Star-Hub module. This is only used if the card has been specially
customized. Please refer to the extra documentation for the meaning of the custom modifications.

This register is supported for all M5i, M4i, M4x, M2p cards and all digitizerNETBOX,
generatorNETBOX or hybridNETBOX based upon these series of cards.

SPCM_CUSTOMMOD_BASE_MASK 000000FFh Mask for the custom modification of the base card.

SPCM_CUSTOMMOD_MODULE_MASK 0000FF00h Mask for the custom modification of the front-end module(s).

SPCM_CUSTOMMOD_STARHUB_MASK 00FF0000h Mask out custom modification of the Star-Hub module.

Table 28: Spectrum API: command register and reset command

Register Value Direction Description

SPC_M2CMD 100 w Command register of the board.

M2CMD_CARD_RESET 1h A software and hardware reset is done for the board. All settings are set to the default values. The data in the board’s 
on-board memory will be no longer valid. Any output signals like trigger or clock output will be disabled.



Analog Inputs Channel Selection

(c) Spectrum Instrumentation GmbH 74

Analog Inputs

Channel Selection
One key setting that influences all other possible settings is the channel enable register. A unique feature of the Spectrum cards is the possibility 
to program the number of channels you want to use. All on-board memory can then be used by these activated channels.

This description shows you the channel enable register for the complete card family. However, your specific board may have less channels 
depending on the card type that you have purchased and therefore does not allow you to set the maximum number of channels shown here.

.

The channel enable register is set as a bitmap. That means one bit of the value corresponds to one channel to be activated. To activate more 
than one channel the values have to be combined by a bitwise OR.

Example showing how to activate 2 channels:

The following table shows all allowed settings for the channel enable register.

Any channel activation mask that is not shown here is not valid. If programming another channel activation 
the driver will return with an error.

To help user programs it is also possible to read out the number of activated channels that correspond to the currently programmed bitmap.

Reading out the channel enable information can be done directly after setting it or later like this:

Assuming that the two channels are available on your card the program will have the following output:

Important note on channel selection

As some of the manuals passages are used in more than one hardware manual most of the registers and 
channel settings throughout this handbook are described for the maximum number of possible channels that 
are available on one card of the current series. There can be less channels on your actual type of board or 
bus-system. Please refer to the technical data section to get the actual number of available channels.

 

Register Value Direction Description

SPC_CHENABLE 11000 read/write Sets the channel enable information for the next board run.

CHANNEL0 1 Activates channel 0

CHANNEL1 2 Activates channel 1

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1);

Channels to activate
Ch0 Ch1 Values to program Value as hex Value as decimal
X CHANNEL0 1h 1

X CHANNEL1 2h 2
X X CHANNEL0 | CHANNEL1 3h 3

Register Value Direction Description

SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0 | CHANNEL1);
spcm_dwGetParam_i32 (hDrv, SPC_CHENABLE, &lActivatedChannels);
spcm_dwGetParam_i32 (hDrv, SPC_CHCOUNT, &lChCount);

printf ("Activated channels bitmask is: 0x%08x\n", lActivatedChannels);
printf ("Number of activated channels with this bitmask: %d\n", lChCount);

Activated channels bitmask is: 0x00000003
Number of activated channels with this bitmask: 2



Analog Inputs Setting up the inputs

(c) Spectrum Instrumentation GmbH 75

Setting up the inputs
This analog acquisition board uses separate input stages and converters on each 
channel. This gives you the possibility to set up the desired and concerning your 
application best suiting input range also separately for each channel. All input 
stage related settings can easily be set by the corresponding input registers. The 
table below shows the available input stage registers and possible standard values 
for your type of board. As there are also modified versions available with different 
input ranges it is recommended to read out the currently available input ranges as 
shown later in this chapter.

 

Input ranges
This analog acquisition board has several different input ranges for each channel. 
This gives you the possibility to set up the desired and concerning your application 
best suiting input range also separately for each channel. The input ranges can 
easily be set by the corresponding input registers. The table below shows the avail-
able input registers and possible standard ranges for your type of board. As there 
are also modified versions available with different input ranges it is recommended 
to read out the currently available input ranges as shown later in this chapter.

The available input rages are read out using the following registers.

The following example reads out the number of available input ranges and reads and prints the minimum and maximum value of all input 
ranges.

 The input range is selected individually for each channel. Please note that the correct input path needs to be set

 

Table 29: Spectrum API: registers for reading the installed input ranges from card EEPROM

Register Value Direction Description

SPC_READIRCOUNT 3000 read Returns the number of available input ranges.

SPC_READRANGEMIN0 4000 read Reads the lower border of input range 0 in mV

SPC_READRANGEMIN1 4001 read Reads the lower border of input range 1 in mV

... ... ...

SPC_READRANGEMAX0 4100 read Reads the upper border of input range 0 in mV

SPC_READRANGEMAX1 4101 read Reads the upper border of input range 1 in mV

... ... ...

spcm_dwGetParam_i32 (hDrv, SPC_READIRCOUNT, &lNumberOfRanges);
for (i = 0; i < lNumberOfRanges; i++)
    {
    spcm_dwGetParam_i32 (hDrv, SPC_READRANGEMIN0 + i, &lMinimumInputRage);
    spcm_dwGetParam_i32 (hDrv, SPC_READRANGEMAX0 + i, &lMaximumInputRange);
    printf („Range %d: %d mV to %d mV\n“, i, lMinimumInputRange, lMaximumInputRange);
    }

Table 30: Spectrum API: input range settings register and available vales depending on installed low-voltage option

Register Value Direction Description

SPC_AMP0 30010 read/write Defines the input range of channel0.

SPC_AMP1 30110 read/write Defines the input range of channel1.

200 ± 200 mV calibrated input range for the appropriate channel.

500 ± 500 mV calibrated input range for the appropriate channel.

1000 ± 1 V calibrated input range for the appropriate channel.

2500 ± 2.5 V calibrated input range for the appropriate channel.

Image 42: complete input stage

Image 43: input stage showing the gain amplifier



Analog Inputs Setting up the inputs

(c) Spectrum Instrumentation GmbH 76

Input offset

In most cases the external signals will not be symmetrically re-
lated to ground. If you want to acquire such asymmetrical sig-
nals, it is possible to use the smallest input range that matches 
the biggest absolute signal amplitude without exceeding the 
range.

The figure at the right shows this possibility. But in this exam-
ple you would leave half of the possible resolution unused.

It is much more efficient if you shift the signal on-board to be 
as symmetrical as possible and to acquire it within the best 
possible range.

This results in a much better use of the converters resolution.

On this acquisition boards from Spectrum you have the pos-
sibility to adjust the input offset separately for each channel.

The example in the right figure shows signals with a 
range of ±1.0 V that have offsets up to ±1.0 V. So relat-
ed to the desired input range these signals have offsets 
of ±100 %.

For compensating such offsets you can use the offset reg-
ister for each channel separately. If you want to compen-
sate the +100 % offset of the outer left signal, you would 
have to set the offset to -100 % to compensate it.

As the offset levels are relatively to the related input 
range, you have to calculate and set your offset again 
when changing the input’s range.

The table below shows the offset registers and the possi-
ble offset ranges for your specific type of board.

  

 

Read out of input features
Each input path (if multiple paths are available on the card) has different features that can be read out to make the software more general. 
If you only operate one single card type in your software it is not necessary to read out these features.

Please note that the following table shows all input features settings that are available throughout all Spectrum acquisition cards. Some of 
these features are not installed on your specific hardware: 

Image 46: Spectrum API: input offset registers and available register settingss

Register Value Direction Description Offset range

SPC_OFFS0 30000 read/write Defines the input’s offset and therefore shifts the input of channel0. ±100 % in steps of 1 % 

SPC_OFFS1 30100 read/write Defines the input’s offset and therefore shifts the input of channel1. ±100 % in steps of 1 % 

Table 31: Spectrum API: register to read the analog input features and the meaning of the feature flags

Register Value Direction Description

SPC_READAIFEATURES 3101 read Returns a bit map with the available features of that input path. The possible return values are listed 
below.

Value Description

SPCM_AI_TERM 00000001h Programmable input termination available

SPCM_AI_SE 00000002h Input is single-ended. If available together with SPC_AI_DIFF: input type is software selectable

SPCM_AI_DIFF 00000004h Input is differential. If available together with SPC_AI_SE: input type is software selectable

SPCM_AI_OFFSPERCENT 00000008h Input offset programmable in per cent of input range

SPCM_AI_OFFSMV 00000010h Input offset programmable in mV

Image 44: Spectrum API: using the input offset shifting to optimize the usage of the input range

Image 45: Spectrum API: effects of different input offset setting



Analog Inputs Setting up the inputs

(c) Spectrum Instrumentation GmbH 77

 
The following example shows a setup of the input range of a two channel card.

Please note that this is a general example and the number of input channels may not match your card channels.

    

Automatic on-board calibration of the offset and gain settings
All of the channels are calibrated in factory before the board is shipped. These values are stored in the on-board EEProm under the default 
settings. If you have asymmetrical signals, you can adjust the offset easily with the corresponding registers of the inputs as shown before.

To start the automatic offset adjustment, simply write the register, mentioned in the following table. 

Before you start an automatic offset adjustment make sure, that no signal is connected to any input. Leave 
all the input connectors open and then start the adjustment. All the internal settings of the driver are changed, 
while the automatic offset compensation is in progress.

As all settings are temporarily stored in the driver, the automatic adjustment will only affect these values. After exiting your program, all cali-
bration information will be lost. To give you a possibility to save your own settings, most Spectrum card have at least one set of user settings 
that can be saved within the on-board EEPROM. The default settings of the offset and gain values are then read-only and cannot be written 
to the EEPROM by the user. If the card has no user settings the default settings may be overwritten.

You can easily either save adjustment settings to the EEPROM with SPC_ADJ_SAVE or recall them with SPC_ADJ_LOAD. These two registers 
are shown in the table below. The values for these EEPROM access registers are the sets that can be stored within the EEPROM. The amount 
of sets available for storing user offset settings depends on the type of board you use. The table below shows all the EEPROM sets, that are 
available for your board.

 

  If you want to make an offset and gain adjustment on all the channels and store the data to the ADJ_DEFAULT set of the EEPROM you can 
do this the way, the following example shows.

   

SPCM_AI_OVERRANGEDETECT 00000020h Programmable overrange detection available

SPCM_AI_DCCOUPLING 00000040h Input is DC coupled. If available together with AC coupling: coupling is software selectable

SPCM_AI_ACCOUPLING 00000080h Input is AC coupled. If available together with DC coupling: coupling is software selectable

SPCM_AI_LOWPASS 00000100h Input has a individually per channel selectable low pass filter (bandwidth limit)

SPCM_AI_ACDC_OFFS_COMP 00000200h Input has a selectable offset compensation for HF-Path with AC/DC coupling/source mismatch.

SPCM_AI_GLOBALLOWPASS 00000800h Card has a globally selectable low pass (affects all channels with the same setting)

SPCM_AI_AUTOCALOFFS 00001000h Input offset can be auto calibrated on the card

SPCM_AI_AUTOCALGAIN 00002000h Input gain can be auto calibrated on the card

SPCM_AI_AUTOCALOFFSNOIN 00004000h Input offset can auto calibrated on the card if inputs are left open

SPCM_AI_HIGHIMP 00008000h Input has a high impedance mode available

SPCM_AI_LOWIMP 00010000h Input has a low impedance mode (50 Ohm) available

SPCM_AI_INDIVPULSEWIDTH 00100000h Trigger pulsewidth is individually per channel programmable

spcm_dwSetParam_i32 (hDrv, SPC_AMP0 ,    1000); // Set up channel0 to the range of ± 1.0 V
spcm_dwSetParam_i32 (hDrv, SPC_AMP1 ,     500); // Set up channel1 to the range of ± 0.5 V

Table 32: Spectrum API: automatic offset compensation register and valid register settings

Register Value Direction Description

SPC_ADJ_AUTOADJ 50020 write Performs the automatic offset compensation in the driver either for all input ranges or only the actual.

ADJ_ALL 0 Automatic offset adjustment for all input ranges.

Table 33: Spectrum API: loading and storing calibration values to the EEPROM

Register Value Direction Description

SPC_ADJ_LOAD 50000 write Loads the specified set of settings from the EEPROM. The default settings are automatically loaded, 
when the driver is started.

read Reads out, what kind of settings have been loaded last.

SPC_ADJ_SAVE 50010 write Stores the current settings to the specified set in the EEPROM.

read Reads out, what kind of settings have been saved last.

ADJ_DEFAULT 0 Default settings, no user settings available

spcm_dwSetParam_i32 (hDrv, SPC_ADJ_AUTOADJ,    ADJ_ALL  ); // Activate offset/gain adjustment on all channels
spcm_dwSetParam_i32 (hDrv, SPC_ADJ_SAVE   ,    ADJ_DEFAULT); // and store values to DEFAULT set in the EEPROM

Value Description



Acquisition modes Overview

(c) Spectrum Instrumentation GmbH 78

Acquisition modes
Your card is able to run in different modes. Depending on the selected mode there are different registers that each define an aspect of this 
mode. The single modes are explained in this chapter. Any further modes that are only available if an option is installed on the card is doc-
umented in a later chapter.

Overview
This chapter gives you a general overview on the related registers for the different modes. The use of these registers throughout the different 
modes is described in the following chapters.

Setup of the mode
The mode register is organized as a bitmap. Each mode corresponds to one bit of this bitmap. When defining the mode to use, please be 
sure just to set one of the bits. All other settings will return an error code.

The main difference between all standard and all FIFO modes is that the standard modes are limited to on-board memory and therefore can 
run with full sampling rate. The FIFO modes are designed to transfer data continuously over the bus to PC memory or to hard disk and can 
therefore run much longer. The FIFO modes are limited by the maximum bus transfer speed the PC can use. The FIFO mode uses the complete 
installed on-board memory as a FIFO buffer. 

However as you’ll see throughout the detailed documentation of the modes the standard and the FIFO mode are similar in programming and 
behavior and there are only a very few differences between them. 

Table 34: Spectrum API: card mode and read out of available card mode software registers

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.



Acquisition modes Commands

(c) Spectrum Instrumentation GmbH 79

Acquisition modes

 

Commands
The data acquisition/data replay is controlled by the command register. The command register controls the state of the card in general and 
also the state of the different data transfers. Data transfers are explained in an extra chapter later on.

The commands are split up into two types of commands: execution commands that fulfill a job and wait commands that will wait for the 
occurrence of an interrupt. Again the commands register is organized as a bitmap allowing you to set several commands together with one 
call. As not all of the command combinations make sense (like the combination of reset and start at the same time) the driver will check the 
given command and return an error code ERR_SEQUENCE if one of the given commands is not allowed in the current state.

Table 35: Spectrum API: possible values for the card mode register. Description of the different card modes

Mode Value Available on Description

SPC_REC_STD_SINGLE 1h all cards Data acquisition to on-board memory for one single trigger event.

SPC_REC_STD_MULTI 2h all cards Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size. 
This mode is described in greater detail in a special chapter about the Multiple Recording option.

SPC_REC_STD_GATE 4h all M2p and 
M4i digitizers 
and NETBOXes

Data acquisition to on-board memory using an external Gate signal. Acquisition is only done as long as the 
gate signal has a programmed level. The mode is described in greater detail in a special chapter about the 
Gated Sampling option.

SPC_REC_STD_ABA 8h all M2p and 
M4i digitizers 
and NETBOXes

Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored 
with programmed sampling rate the inputs are sampled continuously with a slower sampling speed. The 
mode is described in a special chapter about ABA mode option.

SPC_REC_STD_SEGSTATS 10000h M4i/M4x.2xxx
M4i/M4x.44xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

Data acquisition to on-board memory for multiple trigger events, using Block/Segment Statistic Module 
(FPGA firmware Option).

SPC_REC_STD_AVERAGE 20000h M4i/M4x.2xxx
M4i/M4x.44xx
M5i.33xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

Data acquisition to on-board memory for multiple trigger events, using Block Average Module (FPGA firm-
ware Option).

SPC_REC_STD_BOXCAR 800000h M4i/M4x.44xx
DN2/DN6.44x
digitizers only

Enables Boxcar Averaging for standard acquisition. Requires digitizer module with firmware version V29 or 
newer.

SPC_REC_FIFO_SINGLE 10h all cards Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO 
buffer.

SPC_REC_FIFO_MULTI 20h all cards Continuous data acquisition for multiple trigger events.

SPC_REC_FIFO_GATE 40h all M2p and 
M4i digitizers 
and NETBOXes

Continuous data acquisition using an external gate signal.

SPC_REC_FIFO_ABA 80h all M2p and 
M4i digitizers 
and NETBOXes

Continuous data acquisition for multiple trigger events together with continuous data acquisition with a 
slower sampling clock.

SPC_REC_FIFO_SEGSTATS 100000h M4i/M4x.2xxx
M4i/M4x.44xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

Enables Block/Segment Statistic for FIFO acquisition (FPGA firmware Option).

SPC_REC_FIFO_AVERAGE 200000h M4i/M4x.2xxx
M4i/M4x.44xx
M5i.33xx
DN2/DN6.2xx
DN2/DN6.44x
digitizers only

Enables Block Averaging for FIFO acquisition (FPGA firmware Option).

SPC_REC_FIFO_BOXCAR 1000000h M4i/M4x.44xx
DN2/DN6.44x
digitizers only

Enables Boxcar Averaging for FIFO acquisition. Requires digitizer module firmware version V29 or newer.

SPC_REC_FIFO_SINGLE_MONITOR 2000000h all M2p and 
M4i digitizers 
and NETBOXes

Combination of SPC_REC_FIFO_SINGLE mode with additional slower sampling clock data stream for moni-
toring purposes (same as A-data of SPC_REC_FIFO_ABA mode).

Table 36: Spectrum API: card command register and different commands with descriptions

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer.



Acquisition modes Commands

(c) Spectrum Instrumentation GmbH 80

Card execution commands

Card wait commands
These commands do not return until either the defined state has been reached which is signaled by an interrupt from the card or the timeout 
counter has expired. If the state has been reached the command returns with an ERR_OK. If a timeout occurs the command returns with ER-
R_TIMEOUT. If the card has been stopped from a second thread with a stop or reset command, the wait function returns with ERR_ABORT.

Wait command timeout
If the state for which one of the wait commands is waiting isn’t reached any of the wait commands will either wait forever if no timeout is 
defined or it will return automatically with an ERR_TIMEOUT if the specified timeout has expired.

As a default the timeout is disabled. After defining a timeout this is valid for all following wait commands until the timeout is disabled again 
by writing a zero to this register.

A timeout occurring should not be considered as an error. It did not change anything on the board status. The board is still running and will 
complete normally. You may use the timeout to abort the run after a certain time if no trigger has occurred. In that case a stop command is 
necessary after receiving the timeout. It is also possible to use the timeout to update the user interface frequently and simply call the wait 
function afterwards again.

Example for card control:

Card Status
In addition to the wait for an interrupt mechanism or completely instead of it one may also read out the current card status by reading the 
SPC_M2STATUS register. The status register is organized as a bitmap, so that multiple bits can be set, showing the status of the card and 
also of the different data transfers.

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above.

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some 
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started, only some of the settings might  
be changed while the card is running, such as e.g. output level and offset for D/A replay cards. 

M2CMD_CARD_ENABLETRIGGER 8h The trigger detection is enabled. This command can be either sent together with the start command to enable trigger 
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start 
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled. 
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger 
area has been filled the internal trigger engine starts to look for trigger events if the trigger detection has been ena-
bled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data 
has been acquired. In a generation mode receiving this command means that the output has stopped.

Table 37: Spectrum API: timeout definition register

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a millisecond resolution. Writing a zero to this 
register disables the timeout.

// card is started and trigger detection is enabled immediately
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);

// we wait a maximum of 1 second for a trigger detection. In case of timeout we force the trigger
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 1000);
if (spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITTRIGGER) == ERR_TIMEOUT)
    {
    printf (“No trigger detected so far, we force a trigger now!\n”);
    spcm_dwSetParam (hdrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER);
    }

// we disable the timeout and wait for the end of the run
spcm_dwSetParam_i32 (hDrv, SPC_TIMEOUT, 0);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_WAITREADY);
printf (“Card has stopped now!\n”);

Table 38: Spectrum API: card status register and possible status values with descriptions of the status

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information



Acquisition modes Commands

(c) Spectrum Instrumentation GmbH 81

Acquisition cards status overview
The following drawing gives you an overview of the card commands and card status information. After start of card with M2CMD_-
CARD_START the card is acquiring pretrigger data until one time complete pretrigger data has been acquired. Then the status bit M2STAT_-
CARD_PRETRIGGER is set. Either the trigger has been enabled together with the start command or the card now waits for trigger enable 
command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card checks for a trigger event. 
As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card acquires the programmed posttrigger 
data. After all post trigger data has been acquired the status bit M2STAT_CARD_READY is set and data can be read out:

Generation card status overview
This drawing gives an overview of the card commands and status information for a simple generation mode. After start of card with the 
M2CMD_CARD_START the card is armed and waiting. Either the trigger has been enabled together with the start command or the card now 
waits for trigger enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card 
checks for a trigger event. As soon as the trigger event is received the status bit M2STAT_CARD_TRIGGER is set and the card starts with the 
data replay. After replay has been finished - depending on the programmed mode - the status bit M2STAT_CARD_READY is set and the card 
stops.

Data Transfer
Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Data transfer 
shares the command and status register with the card control commands and status information. In general the following details on the data 
transfer are valid for any data transfer in any direction:

• The memory size register (SPC_MEMSIZE) must be programmed before starting the data transfer.
• When the hardware buffer is adjusted from its default (see „Output latency“ section later in this manual), this must be done before defin-

ing the transfer buffers in the next step via the spcm_dwDefTransfer function. 
• Before starting a data transfer the buffer must be defined using the spcm_dwDefTransfer function.
• Each defined buffer is only used once. After transfer has ended the buffer is automatically invalidated.
• If a buffer has to be deleted although the data transfer is in progress or the buffer has at least been defined it is necessary to call the spc-

m_dwInvalidateBuf function.
 

M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the first pretrigger area has been filled. In Multi/ABA/Gated acquisition this status is set only 
for the first segment and will be cleared at the end of the acquisition.

M2STAT_CARD_TRIGGER 2h The first trigger has been detected.

M2STAT_CARD_READY 4h The card has finished its run and is ready.

M2STAT_CARD_SEGMENT_PRETRG 8h This flag will be set for each completed pretrigger area including the first one of a Single acquisition.
Additionally for a Multi/ABA/Gated acquisition of M4i/M4x/M2p only, this flag will be set when the pretrigger 
area of a segment has been filled and will be cleared after the trigger for a segment has been detected.

Image 47: Acquisition cards: graphical overview of acquisition status and card command interaction

Image 48: Generation cards: graphical overview of generation status and card command interaction



Acquisition modes Commands

(c) Spectrum Instrumentation GmbH 82

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the 
spcm_dwDefTransfer function as explained in an earlier chapter.

This function is used to define buffers for standard sample data transfer as well as for extra data transfer for additional ABA or timestamp 
information. Therefore the dwBufType parameter can be one of the following:

The dwDirection parameter defines the direction of the following data transfer:

The direction information used here must match the currently used mode. While an acquisition mode is used 
there’s no transfer from PC to card allowed and vice versa. It is possible to use a special memory test mode 
to come beyond this limit. Set the SPC_MEMTEST register as defined further below.

The dwNotifySize parameter defines the amount of bytes after which an interrupt should be generated. If leaving this parameter zero, the 
transfer will run until all data is transferred and then generate an interrupt. Filling in notify size > zero will allow you to use the amount of 
data that has been transferred so far. The notify size is used on FIFO mode to implement a buffer handshake with the driver or when trans-
ferring large amount of data where it may be of interest to start data processing while data transfer is still running. Please see the chapter on 
handling positions further below for details.

M2i, M3i, M4i, M4x and M2p cards:

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in 
the range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the 
notify size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use 
the polling mode as described later.

M5i:

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in 
the range of 64, 128, 256, 512, 1k or 2k. No other values are allowed. For timestamp the notify size can be 
2k as a minimum. If you need to work with timestamp data in smaller chunks please use the polling mode as de-
scribed later.

The pvDataBuffer must point to an allocated data buffer for the transfer. Please be sure to have at least the amount of memory allocated that 
you program to be transferred. If the transfer is going from card to PC this data is overwritten with the current content of the card on-board 
memory.

The pvDataBuffer needs to be aligned to a page size (4096 bytes). Please use appropriate software com-
mands when allocating the data buffer. Using a non-aligned buffer may result in data corruption.

When not doing FIFO mode one can also use the qwBrdOffs parameter. This parameter defines the starting position for the data transfer as 
byte value in relation to the beginning of the card memory. Using this parameter allows it to split up data transfer in smaller chunks if one 
has acquired a very large on-board memory.

The qwTransferLen parameter defines the number of bytes that has to be transferred with this buffer. Please be sure that the allocated memory 
has at least the size that is defined in this parameter. In standard mode this parameter cannot be larger than the amount of data defined with 
memory size.

M5i cards only:
On M5i cards the qwTransferLen parameter needs to be an integer multiple of 64 bytes. 

uint32 _stdcall spcm_dwDefTransfer_i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to define as listed below under SPCM_BUF_XXXX
    uint32      dwDirection,            // the transfer direction as defined below
    uint32      dwNotifySize,           // number of bytes after which an event is sent (0=end of transfer) 
    void*       pvDataBuffer,           // pointer to the data buffer
    uint64      qwBrdOffs,              // offset for transfer in board memory
    uint64      qwTransferLen);         // buffer length

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode 
option

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the
timestamp option.

SPCM_DIR_PCTOCARD 0 Transfer is done from PC memory to on-board memory of card

SPCM_DIR_CARDTOPC 1 Transfer is done from card on-board memory to PC memory.

SPCM_DIR_CARDTOGPU 2 RDMA transfer from card memory to GPU memory, SCAPP option needed, Linux only

SPCM_DIR_GPUTOCARD 3 RDMA transfer from GPU memory to card memory, SCAPP option needed, Linux only



Acquisition modes Commands

(c) Spectrum Instrumentation GmbH 83

Memory test mode
In some cases it might be of interest to transfer data in the opposite direction. Therefore a special memory test mode is available which allows 
random read and write access of the complete on-board memory. While memory test mode is activated no normal card commands are pro-
cessed:

Invalidation of the transfer buffer
The command can be used to invalidate an already defined buffer if the buffer is about to be deleted by user. This function is automatically 
called if a new buffer is defined or if the transfer of a buffer has completed

The dwBufType parameter need to be the same parameter for which the buffer has been defined:

Commands and Status information for data transfer buffers.
As explained above the data transfer is performed with the same command and status registers like the card control. It is possible to send 
commands for card control and data transfer at the same time as shown in the examples further below.

The data transfer can generate one of the following status information:

Example of data transfer

To keep the example simple it does no error checking. Please be sure to check for errors if using these command in real world programs!

Users should take care to explicitly send the M2CMD_DATA_STOPDMA command prior to invalidating the 
buffer, to avoid crashes due to race conditions when using higher-latency data transportation layers, such 
as to remote Ethernet devices.

Table 39: Spectrum API: memory test register

Register Value Direction Description

SPC_MEMTEST 200700 read/write Writing a 1 activates the memory test mode, no commands are then processed.
Writing a 0 deactivates the memory test mode again.

uint32 _stdcall spcm_dwInvalidateBuf (  // invalidate the transfer buffer 
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType);             // type of the buffer to invalidate as listed above under SPCM_BUF_XXXX

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode 
option. The ABA mode is only available on analog acquisition cards.

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the times-
tamp option. The timestamp mode is only available on analog or digital acquisition cards.

Table 40: Spectrum API: Command register and commands for DMA transfers

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn’t received a 
trigger yet, in that case the transfer start is delayed until the card receives the trigger event

M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This 
wait function also takes the timeout parameter described above into account.

M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

Table 41: Spectrum API: status register and status codes for DMA data transfer

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can 
be more data.

M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

void* pvData = pvAllocMemPageAligned (1024);

// transfer data from PC memory to card memory (on replay cards) ...
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA,  SPCM_DIR_PCTOCARD , 0, pvData, 0, 1024);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// ... or transfer data from card memory to PC memory (acquisition cards)
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA,  SPCM_DIR_CARDTOPC , 0, pvData, 0, 1024);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// explicitely stop DMA tranfer prior to invalidating buffer
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STOPDMA);
spcm_dwInvalidateBuf (hDrv, SPCM_BUF_DATA);
vFreeMemPageAligned (pvData, 1024);



Acquisition modes Standard Single acquisition mode

(c) Spectrum Instrumentation GmbH 84

 

Standard Single acquisition mode
The standard single mode is the easiest and mostly used mode to acquire analog data with a Spectrum acquisition card. In standard single 
recording mode the card is working totally independent from the PC, after the card setup is done. The advantage of the Spectrum boards is 
that regardless to the system usage the card will sample with equidistant time intervals.
The sampled and converted data is stored in the on-board memory and is held there for being read out after the acquisition. This mode allows 
sampling at very high conversion rates without the need to transfer the data into the memory of the host system at high speed.
After the recording is done, the data can be read out by the user and is transferred via the bus into PC memory.

This standard recording mode is the most common mode for all 
analog and digital acquisition and oscilloscope boards. The data 
is written to a programmed amount of the on-board memory (mem-
size). That part of memory is used as a ring buffer, and recording 
is done continuously until a trigger event is detected. After the trig-
ger event, a certain programmable amount of data is recorded 
(post trigger) and then the recording finishes. Due to the continuous 
ring buffer recording, there are also samples prior to the trigger 
event in the memory (pretrigger).

When the card is started the pre trigger area is filled up 
with data first. While doing this the board’s trigger detection is not armed. If you use a huge pre trigger size 
and a slow sample rate it can take some time after starting the board before a trigger event will be detected.

Card mode
The card mode has to be set to the correct mode SPC_REC_STD_SINGLE. 

Memory, Pre- and Posttrigger
At first you have to define, how many samples are to be recorded at all and how many of them should be acquired after the trigger event 
has been detected.

You can access these settings by the register SPC_MEMSIZE, which sets the total amount of data that is recorded, and the register SPC_POST-
TRIGGER, that defines the number of samples to be recorded after the trigger event has been detected. The size of the pretrigger results on 
the simple formula:

pretrigger = memsize - posttrigger

The maximum memsize that can be use for recording is of course limited by the installed amount of memory and by the number of channels 
to be recorded. Please have a look at the topic "Limits of pre, post memsize, loops" later in this chapter.

Example
The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example 
simple there is no error checking implemented.

Table 42: Spectrum API: card mode register and standard single mode setup

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_REC_STD_SINGLE 1h Data acquisition to on-board memory for one single trigger event.

Table 43: Spectrum API: memory size and posttrigger registers for standard single mode

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Sets the memory size in samples per channel.

SPC_POSTTRIGGER 10100 read/write Sets the number of samples to be recorded per channel after the trigger event has been detected.

int32 lMemsize = 16384;                                                // recording length is set to 16 kSamples

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0);                    // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE);          // set the standard single recording mode
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, lMemsize);                     // recording length
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 8192);                     // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

void* pvData = pvAllocMemPageAligned (2 * lMemsize); // assuming 2 bytes per sample 

// read out the data
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA,  SPCM_DIR_CARDTOPC , 0, pvData, 0, 2 * lMemsize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

Image 49: standard acquisition mode and  pretrigger/posttrigger/trigger relation



Acquisition modes FIFO Single acquisition mode

(c) Spectrum Instrumentation GmbH 85

 

FIFO Single acquisition mode
The FIFO single mode does a continuous data acquisition using the on-board memory as a FIFO buffer and transferring data continuously to 
PC memory. One can make on-line calculations with the acquired data, store the data continuously to disk for later use or even have a data 
logger functionality with on-line data display.

Card mode
The card mode has to be set to the correct mode SPC_REC_FIFO_SINGLE.

Length and Pretrigger
Even in FIFO mode it is possible to program a pretrigger area. In general FIFO mode can run forever until it is stopped by an explicit user 
command or one can program the total length of the transfer by two counters Loop and Segment size 

The total amount of samples per channel that is acquired can be calculated by [SPC_LOOPS * SPC_SEGMENTSIZE]. Please stick to the below 
mentioned limitations of the registers.

Difference to standard single acquisition mode
The standard modes and the FIFO modes differ not very much from the programming side. In fact one can even use the FIFO mode to get the 
same behavior like the standard mode. The buffer handling that is shown in the next chapter is the same for both modes. 

Pretrigger
When doing standard single acquisition memory is used as a circular buffer and the pre trigger can be up to the [installed memory] - [minimum 
post trigger]. Compared to this the pre trigger in FIFO mode is limited by a special pre trigger FIFO and hence considerably shorter.

Length of acquisition.
In standard mode the acquisition length is defined before the start and is limited to the installed on-board memory whilst in FIFO mode the 
acquisition length can either be defined or it can run continuously until user stops it.

 

Table 44: Spectrum API: card mode register and standard FIFO mode setup

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.

SPC_REC_FIFO_SINGLE 10h Continuous data acquisition to PC memory. Complete on-board memory is used as FIFO buffer.

Table 45: Spectrum API: setup registers for standard FIFO mode

Register Value Direction Description

SPC_PRETRIGGER 10030 read/write Programs the number of samples to be acquired before the trigger event detection

SPC_SEGMENTSIZE 10010 read/write Length of segments to acquire. 

SPC_LOOPS 10020 read/write Number of segments to acquire in total. If set to zero the FIFO mode will run continuously until it is 
stopped by the user. 



Acquisition modes Limits of pre trigger, post trigger, memory size

(c) Spectrum Instrumentation GmbH 86

Example FIFO acquisition
The following example shows a simple FIFO single mode data acquisition setup with the read out of data afterwards. To keep this example 
simple there is no error checking implemented.

  

Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please 
keep in mind that each sample needs 2 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger 
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account. 
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table 
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase 
according to the complete installed memory

All figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be 
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNEL0);                      // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_SINGLE);           // set the FIFO single recording mode
spcm_dwSetParam_i64 (hDrv, SPC_PRETRIGGER, 1024);                        // 1 kSample of data before trigger

// in FIFO mode we need to define the buffer before starting the transfer
void* pvData = pvAllocMemPageAligned (llBufsizeInSamples * 2);           // 2 bytes per sample
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 4096,
                             pvData, 0, 2 * llBufsizeInSamples);

// now we start the acquisition and wait for the first block
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// we acquire data in a loop. As we defined a notify size of 4k we’ll get the data in >=4k chuncks
llTotalBytes = 0;
while (!dwError)
    {    
    spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes); // read out the available bytes
    llTotalBytes += llAvailBytes;
    
    // here is the right position to do something with the data (printf is limited to 32 bit variables)
    printf ("Currently Available: %lld, total: %lld\n", llAvailBytes, llTotalBytes);

    // now we free the number of bytes and wait for the next buffer
    spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
    dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);
    }

Table 46: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 Ch Standard Single 64 Mem 32 32 Mem - 32 32 32 256G - 32 32 not used not used

(defined by mem and post)
Standard Multi 64 Mem 32 32 32k 32 32 Mem-32 32 64 Mem 32 not used

(defined by segment and post) (Limited by max pretrigger)
FIFO Single not used 32 32k 32 not used 64 8G - 32 32 0 () 4G - 1 1
FIFO Multi not used 32 32k 32 32 256G-32 32 64 pre+post 32 0 () 4G - 1 1

(defined by segment and post) (Limited by max pretrigger)
2 Ch Standard Single 64 Mem/2 32 32 Mem/2 - 32 32 32 256G - 32 32 not used not used

(defined by mem and post)
Standard Multi 64 Mem/2 32 32 16k 32 32 Mem/2-32 32 64 Mem/2 32 not used

(defined by segment and post) (Limited by max pretrigger)
FIFO Single not used 32 16k 32 not used 64 8G - 32 32 0 () 4G - 1 1
FIFO Multi not used 32 16k 32 32 256G-32 32 64 pre+post 32 0 () 4G - 1 1

(defined by segment and post) (Limited by max pretrigger)

Table 47: Spectrum-API: maximum memory sizes for different memory upgrade options

Installed Memory

2 GSample (4 GByte) 8 GSample (16 GByte)

(Option: M5i.xxx-MEM8GS)
Mem 2 GSample 8 GSample
Mem / 2 1 GSample 4 GSample



Acquisition modes Buffer handling

(c) Spectrum Instrumentation GmbH 87

Buffer handling
To handle the huge amount of data that can possibly be acquired with the M5i/M4i/M4x/M2p series cards, there is a very reliable two 
step buffer strategy set up. The on-board memory of the card can be completely used as a real FIFO buffer. In addition a part of the PC 
memory can be used as an additional software buffer. Transfer between hardware FIFO and software buffer is performed interrupt driven 
and automatically by the driver to get best performance. The following drawing will give you an overview of the structure of the data transfer 
handling:

Although an M4i is shown here, this applies to M5i, M4x and M2p cards as well. A data buffer handshake is implemented in the driver 
which allows to run the card in different data transfer modes. The software transfer buffer is handled as one large buffer which is on the one 
side controlled by the driver and filled automatically by busmaster DMA from/to the hardware FIFO buffer and on the other hand it is handled 
by the user who set’s parts of this software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 
software registers:

Internally the card handles two counters, a user counter and a card counter. Depending on the transfer direction the software registers have 
slightly different meanings:

Directly after start of transfer the SPC_DATA_AVAIL_USER_LEN is every time zero as no data is available for the user and the SPC_DATA-
_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for transfer.

The counter that is holding the user buffer available bytes (SPC_DATA_AVAIL_USER_LEN) is related to the
notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get notice 
of it in case the notify size is programmed to a higher value.

Remarks
• The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller 

located on the card. Even if the PC is busy with other jobs data is still transferred until the application data buffer is completely used.
• Even if application data buffer is completely used there’s still the hardware FIFO buffer that can hold data until the complete on-board 

Table 48: Spectrum API: registers for DMA buffer handling

Register Value Direction Description

SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.

SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.

SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again

Table 49: Spectrum API: content of DMA buffer handling registers for different use cases

Transfer direction Register Direction Description

Write to card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are free to write new data to the 
card. The user can now fill this amount of bytes with new data to be transferred.

SPC_DATA_AVAIL_CARD_LEN write After filling an amount of the buffer with new data to transfer to card, the user tells the driver with this 
register that the amount of data is now ready to transfer.

Read from card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are filled with newly transferred 
data. The user can now use this data for own purposes, copy it, write it to disk or start calculations 
with this data.

SPC_DATA_AVAIL_CARD_LEN write After finishing the job with the new available data the user needs to tell the driver that this amount of 
bytes is again free for new data to be transferred.

Any direction SPC_DATA_AVAIL_USER_POS read The register holds the current byte index position where the available bytes start. The register is just 
intended to help you and to avoid own position calculation

Any direction SPC_FILLSIZEPROMILLE read The register holds the current fill size of the on-board memory (FIFO buffer) in promille (1/1000) of 
the full on-board memory. Please note that the hardware reports the fill size only in 1/16 parts of the 
full memory. The reported fill size is therefore only shown in 1000/16 = 63 promille steps.

Image 50: Overview of buffer handling for DMA transfers showing and the interaction with the DMA engine



Acquisition modes Buffer handling

(c) Spectrum Instrumentation GmbH 88

memory is used. Therefore a larger on-board memory will make the transfer more reliable against any PC dead times.
• As you see in the above picture data is directly transferred between application data buffer and on-board memory. Therefore it is abso-

lutely critical to delete the application data buffer without stopping any DMA transfers that are running actually. It is also absolutely criti-
cal to define the application data buffer with an unmatching length as DMA can than try to access memory outside the application data 
area.

• As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is 
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time 
and is therefore highly desirable if other threads do a lot of calculation work. However it is not necessary to use the wait functions and 
one can simply request the current status whenever the program has time to do so. When using this polling mode the announced availa-
ble bytes still stick to the defined notify size!

• If the on-board FIFO buffer has an overrun (card to PC) or an underrun (PC to card) data transfer is stopped. However in case of transfer 
from card to PC there is still a lot of data in the on-board memory. Therefore the data transfer will continue until all data has been trans-
ferred although the status information already shows an overrun.

• For very small notify sizes, getting best bus transfer performance could be improved by using a „continuous buffer“. This mode is 
explained in the appendix in greater detail.

M2i, M3i, M4i, M4x and M2p cards:

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in 
the range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the 
notify size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use 
the polling mode as described later.

M5i:

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-
fore the notify size must be a multiple of 4 kByte. For main data transfer it may also be a fraction of 4k in 
the range of 64, 128, 256, 512, 1k or 2k. No other values are allowed. For timestamp the notify size can be 
2k as a minimum. If you need to work with timestamp data in smaller chunks please use the polling mode as de-
scribed later.

 The following graphs will show the current buffer positions in different states of the transfer. The drawings have been made for the transfer 
from card to PC. However all the block handling is similar for the opposite direction, just the empty and the filled parts of the buffer are 
inverted.

Step 1: Buffer definition
Directly after buffer definition the complete buffer is empty (card to PC) or 
completely filled (PC to card). In our example we have a notify size which 
is 1/4 of complete buffer memory to keep the example simple. In real 
world use it is recommended to set the notify size to a smaller stepsize.

Step 2: Start and first data available
In between we have started the transfer and have waited for the first data 
to be available for the user. When there is at least one block of notify size 
in the memory we get an interrupt and can proceed with the data. Any 
data that already was transferred is announced. The USER_POS is still 
zero as we are right at the beginning of the complete transfer.

Step 3: set the first data available for card
Now the data can be processed. If transfer is going from card to PC that 
may be storing to hard disk or calculation of any figures. If transfer is go-
ing from PC to card that means we have to fill the available buffer again 
with data. After the amount of data that has been processed by the user 
application we set it available for the card and for the next step.

Step 4: next data available
After reaching the next border of the notify size we get the next part of the 
data buffer to be available. In our example at the time when reading the 
USER_LEN even some more data is already available. The user position 
will now be at the position of the previous set CARD_LEN.

Step 5: set data available again
Again after processing the data we set it free for the card use.
In our example we now make something else and don’t react to the inter-
rupt for a longer time. In the background the buffer is filled with more da-
ta.



Acquisition modes Buffer handling

(c) Spectrum Instrumentation GmbH 89

Step 6: roll over the end of buffer
Now nearly the complete buffer is filled. Please keep in mind that our cur-
rent user position is still at the end of the data part that we processed and 
marked in step 4 and step 5. Therefore the data to process now is split in 
two parts. Part 1 is at the end of the buffer while part 2 is starting with 
address 0. 

Step 7: set the rest of the buffer available
Feel free to process the complete data or just the part 1 until the end of 
the buffer as we do in this example. If you decide to process complete 
buffer please keep in mind the roll over at the end of the buffer.

This buffer handling can now continue endless as long as we manage to 
set the data available for the card fast enough. The USER_POS and USER_LEN for step 8 would now look exactly as the buffer shown in step 2.

Buffer handling example for transfer from card to PC (Data acquisition)

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA,  SPCM_DIR_CARDTOPC , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// we start the DMA transfer
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA);

do
    {
    if (!dwError)
        {
        // we wait for the next data to be available. Afte this call we get at least 4k of data to proceed
        dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);

        // if there was no error we can proceed and read out the available bytes that are free again
        spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
        spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llBytePos);

        printf (“We now have %lld new bytes available\n”, llAvailBytes);
        printf (“The available data starts at position %lld\n”, llBytesPos);

        // we take care not to go across the end of the buffer, handling the wrap-around
        if ((llBytePos + llAvailBytes) >= llBufferSizeInBytes)
            llAvailBytes = llBufferSizeInBytes - llBytePos;

        // our do function gets a pointer to the start of the available data section and the length
        vDoSomething (&pcData[llBytesPos], llAvailBytes);

        // the buffer section is now immediately set available for the card
        spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
        }
    }
while (!dwError); // we loop forever if no error occurs



Acquisition modes Data organization

(c) Spectrum Instrumentation GmbH 90

Buffer handling example for transfer from PC to card (Data generation)

Please keep in mind that you are using a continuous buffer writing/reading that will start again at the zero 
position if the buffer length is reached. However the DATA_AVAIL_USER_LEN register will give you the com-
plete amount of available bytes even if one part of the free area is at the end of the buffer and the second 
half at the beginning of the buffer.

 

Data organization
Data is organized in a multiplexed way in the transfer buffer. If using 2 channels data of first activated channel comes first, then data of 
second channel.

The samples are re-named for better readability. A0 is sample 0 of channel 0, B4 is sample 4 of channel 1, and so on.

  

int8* pcData = (int8*) pvAllocMemPageAligned (llBufferSizeInBytes);

// before starting transfer we first need to fill complete buffer memory with meaningful data
vDoGenerateData (&pcData[0], llBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA,  SPCM_DIR_PCTOCARD , 4096, (void*) pcData, 0, llBufferSizeInBytes);

// and transfer some data to the hardware buffer before the start of the card
spcm_dwSetParam_i32 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llBufferSizeInBytes);
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

do
    {
    if (!dwError)
        {
        // if there was no error we can proceed and read out the current amount of available data
        spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_LEN, &llAvailBytes);
        spcm_dwGetParam_i64 (hDrv, SPC_DATA_AVAIL_USER_POS, &llBytePos);

        printf (“We now have %lld free bytes available\n”, llAvailBytes);
        printf (“The available data starts at position %lld\n”, llBytesPos);

        // we take care not to go across the end of the buffer, handling the wrap-around
        if ((llBytePos + llAvailBytes) >= llBufferSizeInBytes)
            llAvailBytes = llBufferSizeInBytes - llBytePos;

        // our do function gets a pointer to the start of the available data section and the length
        vDoGenerateData (&pcData[llBytesPos], llAvailBytes);

        // now we mark the number of bytes that we just generated for replay
        // and wait for the next free buffer
        spcm_dwSetParam_i64 (hDrv, SPC_DATA_AVAIL_CARD_LEN, llAvailBytes);
        dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_WAITDMA);
        }
    }
while (!dwError); // we loop forever if no error occurs

Table 50: M5i cards data organization

Activated Channels Ch0 Ch1 Samples ordering in buffer memory starting with data offset zero
1 channel X A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
1 channel X B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16
2 channels X X A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8



Acquisition modes Data organization

(c) Spectrum Instrumentation GmbH 91

Sample format
The card is using 12 bit A/D samples, that are stored in twos complement in two 8 bit data byte. 12 bit resolution means that data is ranging 
from -2048…to…+2048. Data is stored in little-endian format, the upper 8 bit come first and the lower 8 bit second.:

 

Converting ADC samples to voltage values
The Spectrum driver also contains a register that holds the value of the decimal value of the full scale representation of the installed ADC. This 
value should be used when converting ADC values (in LSB) into real-world voltage values, because this register also automatically takes any 
specialities into account, such as slightly reduced ADC resolution with reserved codes for gain/offset compensation.

In case of a board that uses an 8 bit ADC that provides the full ADC code (with-
out reserving any bits) the returned value would be 128. The peak value for a 
±1.0 V input range would be 1.0 V (or 1000 mV).

A returned sample value of for example +49 (decimal, two’s complement, 
signed representation) would then convert to:

A returned sample value of for example -55 (decimal) would then convert to:

When converting samples that contain any additional data such as for example additional digital channels 
or over-range bits, this extra information must be first masked out and a proper sign-extension must be per-
formed, before these values can be used as a signed two’s complement value for above formulas.

 

Table 51: data sample format in standard mode and with digital inputs enable

Standard Mode Digital inputs enabled

SPCM_XMODE_DIGIN

M5i.33xx M5i.33xx

Data bit 12 bit ADC resolution 12 bit ADC resolution

D15 ADX Bit 11 (sign extension) Multi-Purpose XIO3

D14 ADX Bit 11 (sign extension) Multi-Purpose XIO2

D13 ADX Bit 11 (sign extension) Multi-Purpose XIO1

D12 ADX Bit 11 (sign extension) Multi-Purpose XIO0

D11 ADx Bit 11 (MSB) ADx Bit 11 (MSB)

D10 ADx Bit 10 ADx Bit 10

D9 ADx Bit 9 ADx Bit 9

D8 ADx Bit 8 ADx Bit 8

D7 ADx Bit 7 ADx Bit 7

D6 ADx Bit 6 ADx Bit 6

D5 ADx Bit 5 ADx Bit 5

D4 ADx Bit 4 ADx Bit 4

D3 ADx Bit 3 ADx Bit 3

D2 ADx Bit 2 ADx Bit 2

D1 ADx Bit 1 ADx Bit 1

D0 ADx Bit 0 (LSB) ADx Bit 0 (LSB)

Register Value Direction Description

SPC_MIINST_MAXADCVALUE 1126 read Contains the decimal code (in LSB) of the ADC full scale value.

VIn ADCCode
InputRangepeak

ADCmax
-------------------------------------------------------------------------------------=

Vin 49 1000 mV
128

---------------------------------------------- 382.81 mV= =

Vin 55– 1000 mV
128

---------------------------------------------- 429.69 mV–= =



Clock generation Overview

(c) Spectrum Instrumentation GmbH 92

Clock generation

Overview
The Spectrum M5i PCI Express (PCIe) cards offer a wide variety of differ-
ent clock modes to match all the customers’ needs. All of the clock modes 
are described in detail with programming examples in this chapter.

The figure is showing an overview of the complete engine used on all M5i 
cards for clock generation.

The purpose of this chapter is to give you a guide to the best matching 
clock settings for your specific application and needs.

Clock Mode Register

The selection of the different clock modes has to be done by the
SPC_CLOCKMODE register. All available modes, can be read out by the help of the SPC_AVAILCLOCKMODES register.

The different clock modes and all other related or required register settings are described on the following pages.

The different clock modes

Standard internal sample rate (PLL with internal reference)
This is the easiest and most common way to generate a sample rate with no need for additional external clock signals. The sample rate has 
a very fine resolution, low jitter and a high accuracy. The on-board oscillator acts as a reference to the internal PLL. The specification is found 
in the technical data section of this manual.

External Clock (reference clock)
Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a 
system clock or to feed in an exact matching sample rate. The external clock is divided/multiplied using a PLL allowing a wide range of 
external clock modes.

Depending on whether the external reference clock is used with a single card or with multiple cards connected/synchronized via 
Star-Hub, the externally fed in clock must be either connected to the “Clock-In” connector of the card itself or connected to the Clock 
Input located on the additional PCIe bracket of the Star-Hub module.

Synchronization Clock (option Star-Hub)
The star-hub option allows the synchronization of up to 8 cards of the M5i series from Spectrum with a minimal phase delay between the 
different cards. The clock is distributed from the master card carrying the Star-Hub to all connected cards. For details on the synchronization 
option please take a look at the dedicated chapter in this manual.

Table 52: Spectrum API: clock mode register and available clock modes

Register Value Direction Description

SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.

SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.

SPC_CM_INTPLL 1 Enables internal programmable high precision Quartz 1 for sample clock generation

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Image 51: M5i clock section overview



Clock generation Details on the different clock modes

(c) Spectrum Instrumentation GmbH 93

 

Details on the different clock modes

Standard internal sampling clock (PLL)
The internal sampling clock is generated in default mode by a programmable high precision quartz. You need to select the clock mode by 
the dedicated register shown in the table below:

The user does not have to care about how the desired sampling rate is generated by multiplying and dividing internally. You simply write the 
desired sample rate to the according register shown in the table below and the driver makes all the necessary calculations. If you want to 
make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the sampling rate that 
is matching your desired one best.

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector 
and can be used to synchronize external equipment with the board.

Example on writing and reading internal sampling rate

In all clock modes, the sampling rate can only be programmed as maximum samplingrate and divisions of 
this. Valid sampling rates are [max], [max/2], [max/4], [max/8], ... [max/131072]. Any programmed sam-
pling rate in between will automatically be rounded to the next matching divided sampling clock.

Minimum internal sampling rate
The minimum internal sampling rates depend on the specific type of board. This value can be found in the technical data section of this man-
ual.

Maximum internal sampling rate (standard clock mode)

(1) Card can also run with full speed (6.4 GS/s or 10.0 GS/s) on channel 1 but will have a reduced signal quality compared to using 
channel 0. It is not recommended to use channel 1 in this mode, as channel 0 is optimized for full speed acquisition.

 

Oversampling
All fast instruments have a minimum clock frequency that is limited by either the manufacturer limit of the used A/D converter or by limiting 
factors of the clock design. You find this minimum sampling rate specified in the technical data section as minimum native ADC converter 
clock. 

Table 53: Spectrum API: clock mode register and internal clock mode

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_INTPLL 1 Enables internal programmable high precision Quartz 1 for sample clock generation

Table 54: Spectrum API: samplerate register

Register Value Direction Description

SPC_SAMPLERATE 20000 write Defines the sample rate in Hz for internal sample rate generation.

read Read out the internal sample rate that is nearest matching to the desired one.

Table 55: Spectrum API: clock output and clock output frequency register

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a „1“ enables clock output on external clock output connector. Writing a „0“ disables the 
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_INTPLL); // Enables internal programmable quartz 1
spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE,  62500000);    // Set internal sampling rate to 62.5 MHz
spcm_dwSetParam_i32 (hDrv, SPC_CLOCKOUT,  1);             // enable the clock output of the card
spcm_dwGetParam_i64 (hDrv, SPC_SAMPLERATE, &lSamplerate); // Read back the programmed sample rate and print
printf („Sample rate = %d\n“, lSamplerate);               // it. Output should be „Sample rate = 62500000“

Table 56: Spectrum API: maximum internal sampling rate depending on channel selection and model

activated Channels

M
5i

.3
32

1

M
5i

.3
33

0

M
5i

.3
33

7

M
5i

.3
35

0
M

5i
.3

36
0

M
5i

.3
35

7
M

5i
.3

36
7

Ch0 Ch1

X 3.2 GS/s 6.4 GS/s 6.4 GS/s 10.0 GS/s 10.0 GS/s
X 3.2 GS/s n.a. 3.2 GS/s(1) n.a. 5.0 GS/s(1)

X X 3.2 GS/s n.a. 3.2 GS/s n.a. 5.0 GS/s



Clock generation Details on the different clock modes

(c) Spectrum Instrumentation GmbH 94

When using one of the above mentioned internal clock modes the driver allows you to program sampling clocks that lie far beneath this 
minimum sampling clock. To run the instrument properly we use a special oversampling mode where the A/D converter/clock section is within 
its specification and only the digital part of the card is running with the slower clock. This is completely defined inside the driver and cannot 
be modified by the user. The following register allows to read out the oversampling factor for further calculation

When using clock output the sampling clock at the output connector is the real instrument sampling clock and 
not the programmed slower sampling rate. To calculate the output clock, please just multiply the pro-
grammed sampling clock with the oversampling factor read with the above mentioned register.

  

External clock (reference clock)
The external clock input is fed through a PLL to the clock system. Therefore the input will act as a reference clock input thus allowing to either 
use a copy of the external clock or to generate any sampling clock within the allowed range from the reference clock. Please note the limited 
setup granularity in comparison to the internal sampling clock generation. Details are found in the technical data section.

Due to the fact that the driver needs to know the external fed in frequency for an exact calculation of the sampling rate you must set the 
SPC_REFERENCECLOCK register accordingly as shown in the table below. The driver then automatically sets the PLL to achieve the desired 
sampling rate. Please be aware that the PLL has some internal limits and not all desired sampling rates may be reached with every reference 
clock.

Example of reference clock:

Depending on whether the external reference clock is used with a single M5i card or with multiple M5i cards connected/synchro-
nized via Star-Hub, the externally fed in clock must be either connected to the “Clock-In” connector of the card itself or connected 
to the Clock Input located on the additional PCIe bracket of the Star-Hub module.

It is recommended that the sampling clock is always a multiple of the reference clock. If the sampling clock 
is a division of the reference clock, the clock starting phase is undetermined and may change between resets 
or clock configuration changes.

PLL Locking Error
The external clock signal is routed to a PLL to generate any sampling clock from this external clock. Due to the internal structure of the card 
the PLL is even used if a copy of the clock fed in externally is used for sampling (SPC_REFERENCECLOCK = SPC_SAMPLERATE). The PLL needs 
a stable and defined external clock with no gaps and no variation in the frequency. The external clock must be present when issuing the start 
command. It is not possible to start the card with external clock activated and no external clock available.

When starting the card all settings are written to hardware and the PLL is programmed to generate the desired sampling clock. If there has 
been any change to the clock setting the PLL then tries to lock on the external clock signal to generate the sampling clock. This locking will 
normally need 10 to 20 ms until the sampling clock is stable. Some clock settings may also need 200 ms to lock the PLL. This waiting time is 
automatically added at card start.

However if the PLL can not lock on the external clock either because there is no clock available or it hasn’t sufficient signal levels or the clock 
is not stable the driver will return with an error code ERR_CLOCKNOTLOCKED. In that case it is necessary to check the external clock con-
nection. Please see the example below:

Table 57: Spectrum API: clock oversampling readout register

Register Value Direction Description

SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isn’t active a 1 is returned.

Table 58: Spectrum API: clock mode register and external reference clock setup

Register Value Direction Description

SPC_CLOCKMODE 20200 read/write Defines the used clock mode

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Table 59: Spectrum API: reference clock register and available settings

Register Value Direction Description

SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range stated in the technical data section.

External sampling rate in Hz as an integer value You need to set up this register exactly to the frequency of the external fed in clock.

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM_EXTREFCLOCK);   // Set to reference clock mode
spcm_dwSetParam_i32 (hDrv, SPC_REFERENCECLOCK, 10000000);        // Reference clock that is fed in is 10 MHz
spcm_dwSetParam_i64 (hDrv, SPC_SAMPLERATE,     65200000);        // We want to have 62.5 MHz as sampling rate

// settings done to external clock like shown above.
if (spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER) == ERR_CLOCKNOTLOCKED)
    {
    printf („External clock not locked. Please check connection\n“);
    return -1;
    }



Clock generation Details on the different clock modes

(c) Spectrum Instrumentation GmbH 95

Independent of the used clock source it is possible to enable the clock output. The clock will be available on the external clock output connector 
and can be used to synchronize external equipment with the board.

  

Table 60: Spectrum API: clock output and clock output frequency register

Register Value Direction Description

SPC_CLOCKOUT 20110 read/write Writing a „1“ enables clock output on external clock output connector. Writing a „0“ disables the 
clock output (tristate)

SPC_CLOCKOUTFREQUENCY 20111 read Allows to read out the frequency of an internally synthesized clock present at the clock output.



Trigger modes and related registers General Description

(c) Spectrum Instrumentation GmbH 96

Trigger modes and related registers

General Description
The trigger modes of the Spectrum M5i series A/D and D/A cards are very extensive and give you the possibility to detect nearly any trigger 
event you can think of.

You can choose between more than 10 external trigger modes and up to 20 internal trigger modes (on analog acquisition cards) including 
software and channel trigger, depending on your type of board. Many of the channel trigger modes can be independently set for each input 
channel (on A/D boards only) resulting in a even bigger variety of modes. This chapter is about to explain all of the different trigger modes 
and setting up the card’s registers for the desired mode.

 

Trigger Engine Overview

The trigger engine of the M5i card series allows to combine several different trigger sources with OR and AND combination, with a trigger 
delay or even with an OR combination across several cards when using the Star-Hub option. The above drawing gives a complete overview 
of the trigger engine and shows all possible features that are available.

On A/D cards each analog input channel has two trigger level comparators to detect edges as well as windowed triggers. All card types 
have also different external trigger sources. One main trigger source (Ext0/Trig0) with one analog level comparator. Additionally four multi 
purpose inputs/outputs can be used as additional logic (TTL) trigger sources as well. These lines can also be software programmed to either 
inputs or outputs some extended status signals.

The Enable trigger allows the user to enable or disable all trigger sources (including channel trigger on A/D cards and external trigger) with 
a single software command. The enable trigger command will not work on force trigger.

When the card is waiting for a trigger event, either a channel trigger or an external trigger the force trigger command allows to force a 
trigger event with a single software command. The force trigger overrides the enable trigger command.

Before the trigger event is finally generated, it is wired through a programmable trigger delay. This trigger delay will also work when used 
in a synchronized system thus allowing each card to individually delay its trigger recognition.

  

Image 52: M5i card trigger engine overview with the different trigger sources and trigger outputs



Trigger modes and related registers Trigger masks

(c) Spectrum Instrumentation GmbH 97

Trigger masks

Trigger OR mask
The purpose of this passage is to explain the trigger OR mask (see 
left figure) and all the related software registers in detail.

The OR mask shown in the overview before as one object, is separat-
ed into two parts: a general OR mask for main external trigger (ex-
ternal analog window trigger), the secondary external trigger 
(external analog comparator trigger and software trigger and a 
channel OR mask.

Every trigger source of the M5i series cards is wired to one of the 
above mentioned OR masks. The user then can program which trigger source 
will be recognized, and which one won’t.

This selection for the general mask is realized with the SPC_TRIG_ORMASK 
register in combination with constants for every possible trigger source.

This selection for the channel mask (A/D cards only) is realized with the
SPC_TRIG_CH_ORMASK0 register in combination with constants for every 
possible channel trigger source.

In either case the sources are coded as a bitfield, so that they can be combined 
by one access to the driver with the help of a bitwise OR.

If no input is enabled, the output will be a logic “true”, to not block the follow-
ing static AND mask.

The table below shows the relating register for the general OR mask and the 
possible constants that can be written to it.

Please note that as default the SPC_TRIG_ORMASK is set to SPC_TMASK_SOFTWARE. When not using any trig-
ger mode requiring values in the SPC_TRIG_ORMASK register, this mask should explicitely cleared, as other-
wise the software trigger will override other modes.

The following example shows, how to setup the OR mask, for the two external trigger inputs, ORing them together. When using just a single 
trigger, only this particular trigger must be used in the OR mask register, respectively. As an example a simple edge detection has been 
chosen for Ext1 input and a window edge detection has been chosen for Ext0 input. The explanation and a detailed description of the different 
trigger modes for the external trigger inputs will be shown in the dedicated passage within this chapter.

Table 61: Spectrum API: external trigger OR mask related software register and available settings

Register Value Direction Description

SPC_TRIG_AVAILORMASK 40400 read Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TMASK_NONE 0h No trigger source selected

SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card will trigger immediately after start.

SPC_TMASK_EXT0 2h Enables the external (analog) trigger 0 (Trig In) for the OR mask. The card will trigger if the programmed condition for 
this input is valid.

SPC_TMASK_EXT1 4h Enables the X0 (logic) trigger for the OR mask. The card will trigger if the programmed condition for this input is valid.

SPC_TMASK_EXT2 8h Enables the X1 (logic) trigger for the OR mask. The card will trigger if the programmed condition for this input is valid.

SPC_TMASK_EXT3 10h Enables the X2 (logic) trigger for the OR mask. The card will trigger if the programmed condition for this input is valid.

SPC_TMASK_EXT4 20h Enables the X3 (logic) trigger for the OR mask. The card will trigger if the programmed condition for this input is valid.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_LEVEL0, 1800);      // External trigger level set to 1.8 V
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS);  // Setting up to detect positive edges

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT1_MODE, SPC_TM_NEG);  // Setting up X1 logic trigger for falling edges

// Enable both external triggers within the OR mask, by ORing the mask flags together
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT1 | SPC_TMASK_EXT0); 

Image 53: Trigger overview - trigger OR mask

Image 54: trigger OR mask details



Trigger modes and related registers Trigger masks

(c) Spectrum Instrumentation GmbH 98

The table below is showing the registers for the channel OR mask (A/D cards only) and the possible constants that can be written to it.

The following example shows, how to setup the OR mask for channel trigger. As an example a simple edge detection has been chosen. The 
explanation and a detailed description of the different trigger modes for the channel trigger modes will be shown in the dedicated passage 
within this chapter.

Trigger AND mask
The purpose of this passage is to explain the trigger AND mask (see 
left figure) and all the appendant software registers in detail.

The AND mask shown in the overview before as one object, is sepa-
rated into two parts: a general AND mask for external trigger and 
software trigger and a channel AND mask.

Every trigger source of the M5i series cards except the software trig-
ger is wired to one of the above mentioned AND masks. The user then can 
program which trigger source will be recognized, and which one won’t.

This selection for the general mask is realized with the SPC_TRIG_ANDMASK 
register in combination with constants for every possible trigger source.

This selection for the channel mask (A/D cards only) is realized with the SP-
C_TRIG_CH_ANDMASK0 register in combination with constants for every 
possible channel trigger source.

In either case the sources are coded as a bitfield, so that they can be combined 
by one access to the driver with the help of a bitwise OR.

If no input is enabled, the output will be a logic “true”, to not block the follow-
ing static AND mask.

Table 62: Spectrum API: channel trigger OR mask related software register and available settings

Register Value Direction Description

SPC_TRIG_CH_AVAILORMASK0 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0…3) for the channel OR mask 
are set, if available.

SPC_TRIG_CH_ORMASK0 40460 read/write Includes the analog channels (0…3) within the channel trigger OR mask of the card.

SPC_TMASK0_CH0 00000001h Enables channel0 for recognition within the channel OR mask.

SPC_TMASK0_CH1 00000002h Enables channel1 for recognition within the channel OR mask.

SPC_TMASK0_CH2 00000004h Enables channel2 for recognition within the channel OR mask.

SPC_TMASK0_CH3 00000008h Enables channel3 for recognition within the channel OR mask.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE);    // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK_CH0); // Enable channel0 trigger within the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_LEVEL0, 0);             // Trigger level is zero crossing
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_POS);      // Setting up channel trigger for rising edges

Image 55: Trigger overview - trigger AND mask

Image 56: trigger AND mask details



Trigger modes and related registers Software trigger

(c) Spectrum Instrumentation GmbH 99

The table below shows the relating register for the general AND mask and the possible constants that can be written to it.

The following example shows, how to setup the AND mask, for an external trigger. As an example a simple high level detection has been 
chosen. When multiple external triggers shall be combined by AND, both of the external sources must be included in the AND mask register, 
similar to the OR mask example shown before. The explanation and a detailed description of the different trigger modes for the external 
trigger inputs will be shown in the dedicated passage within this chapter.

The table below is showing the constants for the channel AND mask (A/D cards only) and all the constants for the different channels.

The following example shows, how to setup the AND mask for a channel trigger. As an example a simple level detection has been chosen. 
The explanation and a detailed description of the different trigger modes for the channel trigger modes will be shown in the dedicated pas-
sage within this chapter.

 

Software trigger
The software trigger is the easiest way of triggering any Spectrum 
board. The acquisition or replay of data will start immediately af-
ter the card is started and the trigger engine is armed. The result-
ing delay upon start includes the time the board needs for its 
setup and the time for recording the pre-trigger area (for acquisi-
tion cards).
For enabling the software trigger one simply has to include the 
software event within the trigger OR mask, as the following table is showing:

Example for setting up the software trigger: 

Table 63: Spectrum API: external trigger AND mask related software register and available settings

Register Value Direction Description

SPC_TRIG_AVAILANDMASK 40420 read Bitmask, in which all bits of the below mentioned sources for the AND mask are set, if available.

SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.

SPC_TMASK_NONE 0 No trigger source selected

SPC_TMASK_EXT0 2h Enables the external (analog) trigger 0 for the AND mask. The card will trigger if the programmed condition for this 
input is valid.

SPC_TMASK_EXT1 4h Enables the X0 (logic) trigger for the AND mask. The card will trigger if the programmed condition for this input is 
valid.

SPC_TMASK_EXT2 8h Enables the X1 (logic) trigger for the AND mask. The card will trigger if the programmed condition for this input is 
valid.

SPC_TMASK_EXT3 10h Enables the X2 (logic) trigger for the AND mask. The card will trigger if the programmed condition for this input is 
valid.

SPC_TMASK_EXT4 20h Enables the X3 (logic) trigger for the AND mask. The card will trigger if the programmed condition for this input is 
valid.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE);    // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ANDMASK, SPC_TMASK_EXT0); // Enable external trigger within the AND mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_LEVEL0, 2000);       // Trigger level is 2.0 V (2000 mV)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_HIGH);  // Setting up external trigger for HIGH level

Table 64: Spectrum API: channel trigger AND mask related software register and available settings

Register Value Direction Description

SPC_TRIG_CH_AVAILANDMASK0 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0…3) for the channel AND mask 
are set, if available.

SPC_TRIG_CH_ANDMASK0 40480 read/write Includes the analog or digital channels (0…3) within the channel trigger AND mask of the card.

SPC_TMASK0_CH0 00000001h Enables channel0 for recognition within the channel OR mask.

SPC_TMASK0_CH1 00000002h Enables channel1 for recognition within the channel OR mask.

SPC_TMASK0_CH2 00000004h Enables channel2 for recognition within the channel OR mask.

SPC_TMASK0_CH3 00000008h Enables channel3 for recognition within the channel OR mask.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE);    // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ANDMASK0, SPC_TMASK_CH0);// Enable channel0 trigger within AND mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_LEVEL0, 0);             // channel level to detect is zero level
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_HIGH);     // Setting up ch0 trigger for HIGH levels

Table 65: Spectrum API: software register and register setting for software trigger

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TMASK_SOFTWARE 1h Sets the trigger mode to software, so that the recording/replay starts immediately.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_SOFTWARE); // Internal software trigger mode is used



Trigger modes and related registers Force- and Enable trigger

(c) Spectrum Instrumentation GmbH 100

 

Force- and Enable trigger
In addition to the software trigger (free run) it is also possible to force a trigger event by software while the board is waiting for a real physical 
trigger event. The forcetrigger command will only have any effect, when the board is waiting for a trigger event. The command for forcing 
a trigger event is shown in the table below. 

Issuing the forcetrigger command will every time only generate one trigger event. If for example using Multiple Recording that will result in 
only one segment being acquired by forcetrigger. After execution of the forcetrigger command the trigger engine will fall back to the trigger 
mode that was originally programmed and will again wait for a trigger event.

The example shows, how to use the forcetrigger command:

It is also possible to enable (arm) or disable (disarm) the card’s whole triggerengine by software. By default the trigger engine is disabled.

The example shows, how to arm and disarm the card’s trigger engine properly:

 

Trigger delay
All of the Spectrum M5i series cards allow the user to program an 
additional trigger delay. As shown in the trigger overview section, 
this delay is the last element in the trigger chain. Therefore the user 
does not have to care for the sources when programming the trigger 
delay.

As shown in the overview the trigger delay is located after the star-
hub connection meaning that every M5i card being synchronized 
can still have its own trigger delay programmed. The Star-Hub will 
combine the original trigger events before the result is being delayed.

The delay is programmed in samples. The resulting time delay will 
therefore be [Programmed Delay] / [Sampling Rate]. 

The following table shows the related register and the possible values. A value of 0 disables the trigger delay. 

The example shows, how to use the trigger delay command:

Table 66: Spectrum API: command register and force trigger command

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p/M5i series cards.

M2CMD_CARD_FORCETRIGGER 10h Forces a trigger event if the hardware is still waiting for a trigger event.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER); // Force trigger is used.

Table 67: Spectrum API: command register and trigger enable/disable command

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i/M3i/M4i/M4x/M2p/M5i series cards.

M2CMD_CARD_ENABLETRIGGER 8h Enables the trigger engine. Any trigger event will now be recognized.

M2CMD_CARD_DISABLETRIGGER 20h Disables the trigger engine. No trigger events will be recognized, except force trigger.

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_ENABLETRIGGER);  // Trigger engine is armed.
...
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_DISABLETRIGGER); // Trigger engine is disarmed.

Table 68: Spectrum API: trigger delay registers and available settings

Register Value Direction Description

SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.

SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigger events.

0 No additional delay will be added. The resulting internal delay is mentioned in the technical data section.

32…[256G -32] in steps of 32 (12 bit cards) Defines the additional trigger delay in number of sample clocks. The trigger delay can be programmed up to 
(256GSamples - 32) = 274877906912. Stepsize is 32 samples for 12 bit cards.

spcm_dwSetParam_i64 (hDrv, SPC_TRIG_DELAY, 1984); // A detected trigger event will be
                                                  // delayed for 1984 sample clocks.

Image 57: trigger engine overview with marked trigger delay stage



Trigger modes and related registers Trigger holdoff

(c) Spectrum Instrumentation GmbH 101

Using the delay trigger does not affect the ratio between pre trigger and post trigger recorded number of samples, but only shifts 
the trigger event itself. For changing these values, please take a look in the relating chapter about „Acquisition Modes“.

 

Trigger holdoff
All the cards of the Spectrum M5i series allow the user to program a trigger holdoff time when using the segmented acquisition or generation 
called Multiple Recording/Multiple Replay. This can be useful when observing and analyzing certain signals that are packeted or bursty in 
nature.

Using a trigger holdoff will result in an artificially inserted dead-time after each posttrigger area, in which the trigger engine will reject all 
detected trigger events. The holdoff value is programmed in samples and the resulting holdoff time will therefore be [Programmed Delay] / 
[Sampling Rate].

The following table shows the related register and the possible values. A value of 0 disables the trigger holdoff. 

The example shows, how to use the trigger holdoff command:

 

Trigger Counter
The number of acquired trigger events is counted in hardware and can be read out while the acquisition is running or after the acquisition 
has finished. The trigger events are counted both in standard mode as well as in FIFO mode.

The trigger counter feature needs at least driver version V2.17 and firmware version V20 (M2i series), V10 
(M3i series), V6 (M4i/M4x series) or V1 (M2p and M5i series). Please update the driver and the card firmware 
to these versions to use this feature. Trying to use this feature without the proper firmware version will issue 
a driver error.

On M2i and M3i cards, using the trigger counter information allows to determine how many Multiple Recording segments have 
been acquired and can perform a memory flush by issuing Force trigger commands to read out all data. This is helpful if the number 
of trigger events is not known at the start of the acquisition. In that case one will do the following steps:

• Program the maximum number of segments that one expects or use the FIFO mode with unlimited segments
• Set a timeout to be sure that there are no more trigger events acquired. Alternatively one can manually proceed as soon as it is clear from 

the application that all trigger events have been acquired
• Read out the number of acquired trigger segments
• Issue a number of Force Trigger commands to fill the complete memory (standard mode) or to transfer the last FIFO block that contains 

valid data segments
• Use the trigger counter value to split the acquired data into valid data with a real trigger event and invalid data with a force trigger event.
 

Table 69: Spectrum API: trigger holdoff related registers and settings for these

Register Value Direction Description

SPC_TRIG_AVAILHOLDOFF 40802 read Contains the maximum available holdoff as a decimal integer value.

SPC_TRIG_HOLDOFF 40811 read/write Defines the trigger holdoff  for the card’s trigger engine for segmented modes (Multi, ABA, Gate).

0 No additional holdoff will be added.

32…[256G -32] in steps of 32 (12 bit cards) Defines the trigger holdoff in number of sample clocks. The trigger holdoff can be programmed up to
(256GSamples - 32) = 274877906912. Stepsize is 32 samples for 12 bit cards.

spcm_dwSetParam_i64 (hDrv, SPC_TRIG_HOLDOFF, 1984); // A trigger holdoff is set to 1984 sample clocks

Table 70: Spectrum API: trigger counter register and register return values

Register Value Direction Description

SPC_TRIGGERCOUNTER 200905 read Returns the number of trigger events that has been acquired since the acquisition start. The internal 
trigger counter has 48 bits. It is therefore necessary to read out the trigger counter value with 64 bit 
access or 2 x 32 bit access if the number of trigger events exceed the 32 bit range.



Trigger modes and related registers Main analog external trigger (Ext0)

(c) Spectrum Instrumentation GmbH 102

Main analog external trigger (Ext0)
The M5i series has one primary external trigger input consisting of 
an input stage with programmable either 3 kOhm or 50 Ohm input 
termination and one comparator that can be programmed in the 
range of ±5000 mV. Using a comparator offers a wide range of
different logic levels for the available trigger modes that are support-
ed like edge, level.

The external analog trigger can be easily combined with channel trig-
ger or with the additional logic triggers via the multi-purpose I/O 
lines, when being programmed as an additional external trigger in-
put. The programming of the masks is shown in the chapters above.

Trigger Mode
Please find the main external (analog) trigger input modes below. A detailed description of the modes follows in the next chapters..

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

 Trigger Input Termination
The external trigger input is a high impedance input with 3 kOhm termination against GND. It is possible to program a 50 Ohm termination 
by software to terminate fast trigger signals correctly. If you enable the termination, please make sure, that your trigger source is capable to 
deliver the needed current. Please check carefully whether the source is able to fulfill the trigger input specification given in the technical data 
section.

Please note that the signal levels will drop by 50% if using the 50 Ohm termination and your source also has 50 Ohm output impedance 
(both terminators will then work as a 1:2 divider). In that case it will be necessary to reprogram the trigger levels to match the new signal 
levels. In case of problems receiving a trigger please check the signal level of your source while connected to the terminated input.

 

Trigger level
All of the external (analog) trigger modes listed above require a trigger level to be set (except SPC_TM_NONE of course). The meaning of 
the trigger levels is depending on the selected mode and can be found in the detailed trigger mode description that follows. 

Trigger level for the external (analog) trigger is to be programmed in mV:

  

Table 71: Spectrum API: external trigger mode registers and available settings therefore

Register Value Direction Description

SPC_TRIG_EXT0_AVAILMODES 40500 read Bitmask showing all available trigger modes for external 0 (Ext0) = main analog trigger input

SPC_TRIG_EXT0_MODE 40510 read/write Defines the external trigger mode for the external SMA connector trigger input. The trigger need to 
be added to either OR or AND mask input to be activated.

SPC_TM_NONE 00000000h Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.

SPC_TM_POS 00000001h Trigger detection for positive edges (crossing level 0 from below to above)

SPC_TM_NEG 00000002h Trigger detection for negative edges  (crossing level 0 from above to below)

SPC_TM_BOTH 00000004h Trigger detection for positive and negative edges (any crossing of level 0)

SPC_TM_HIGH 00000008h Trigger detection for HIGH levels (signal above level 0)

SPC_TM_LOW 00000010h Trigger detection for LOW levels (signal below level 0)

Table 72: Spectrum API: trigger or mask and setup for external trigger

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT0 2h Enable primary external trigger input for the OR mask

Register Value Direction Description

SPC_TRIG_TERM 40110 read/write A „1“ sets the 50 Ohm termination for external trigger signals. A „0“ sets the high impedance termi-
nation

Table 73: Spectrum API: software registers for external trigger levels

Register Value Direction Description Range

SPC_TRIG_EXT_AVAIL0_MIN 42340 read returns the minimum trigger level to be programmed in mV

SPC_TRIG_EXT_AVAIL0_MAX 42341 read returns the maximum trigger level to be programmed in mV

SPC_TRIG_EXT_AVAIL0_STEP 42342 read returns the step size of  trigger level to be programmed in mV

SPC_TRIG_EXT0_LEVEL0 42320 read/write Trigger level 0 for external trigger Ext0 -5000 mV to +5000 mV

Image 58: trigger engine overview and external trigger



Trigger modes and related registers Main analog external trigger (Ext0)

(c) Spectrum Instrumentation GmbH 103

Detailed description of the external analog trigger modes
For all external analog trigger modes shown below, either the OR mask or the AND must contain the external trigger to activate the external 
input as trigger source:.

The following pages explain the available modes in detail.

Trigger on positive edge
The trigger input is continuously sampled with the selected 
sample rate. If the programmed trigger level is crossed by 
the trigger signal from lower values to higher values (rising 
edge) then the trigger event will be detected.

This edge triggered external trigger mode correspond to 
the trigger possibilities of usual oscilloscopes.

Trigger on negative edge
The trigger input is continuously sampled with the selected 
sample rate. If the programmed trigger level is crossed by 
the trigger signal from higher values to lower values (falling 
edge) then the trigger event will be detected.

This edge triggered external trigger mode correspond to 
the trigger possibilities of usual oscilloscopes.

Table 74: Spectrum API: software registers to program external trigger

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.

SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.

SPC_TMASK_EXT0 2h Enables the main external (analog) trigger 0 for the mask. 

Register Value Direction set to Value

SPC_TRIG_EXT0_MODE 40510 read/write SPC_TM_POS 1h

SPC_TRIG_EXT0_LEVEL0 42320 read/write Set it to the desired trigger level in mV mV

Register Value Direction set to Value

SPC_TRIG_EXT0_MODE 40510 read/write SPC_TM_NEG 2h

SPC_TRIG_EXT0_LEVEL0 42320 read/write Set it to the desired trigger level in mV mV



Trigger modes and related registers Main analog external trigger (Ext0)

(c) Spectrum Instrumentation GmbH 104

Trigger on positive and negative edge
The trigger input is continuously sampled with the selected 
sample rate. If the programmed trigger level is crossed by 
the trigger signal (either rising or falling edge) the trigger 
event will be detected.

This edge triggered external trigger mode correspond to 
the trigger possibilities of usual oscilloscopes.

High level trigger
This trigger mode will generate an internal gate signal that 
can be useful in conjunction with a second trigger mode to 
gate that second trigger. If using this mode as a single trigger 
source the card will detect a trigger event at the time when 
entering the high level (acting like positive edge trigger) or if 
the trigger signal is already above the programmed level at 
the start it will immediately detect a trigger event.

The trigger input is continuously sampled with the selected 
sample rate. The trigger event will be detected if the trigger 
input is above the programmed trigger level.

Low level trigger
This trigger mode will generate an internal gate signal that 
can be useful in conjunction with a second trigger mode to 
gate that second trigger. If using this mode as a single trigger 
source the card will detect a trigger event at the time when 
entering the low level (acting like negative edge trigger) or if 
the trigger signal is already above the programmed level at 
the start it will immediately detect a trigger event.

The trigger input is continuously sampled with the selected 
sample rate. The trigger event will be detected if the trigger 
input is below the programmed trigger level.

 

Register Value Direction set to Value

SPC_TRIG_EXT0_MODE 40510 read/write SPC_TM_BOTH 4h

SPC_TRIG_EXT0_LEVEL0 42320 read/write Set it to the desired trigger level in mV mV

Register Value Direction set to Value

SPC_TRIG_EXT0_MODE 40510 read/write SPC_TM_HIGH 00000008h

SPC_TRIG_EXT0_LEVEL0 42320 read/write Set it to the upper trigger level in mV mV

Register Value Direction set to Value

SPC_TRIG_EXT0_MODE 40510 read/write SPC_TM_LOW 00000010h

SPC_TRIG_EXT0_LEVEL0 42320 read/write Set it to the upper trigger level in mV mV



Trigger modes and related registers External logic trigger (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 105

External logic trigger (X0, X1, X2, X3)
The four multi purpose I/O lines of the M5i series can be set up as 
additional logic (TTL) triggers.

The external logic triggers can be easily combined with the external 
analog trigger as well as the channel trigger.The programming of the 
masks is shown in the chapters above.

Trigger Mode
Please find the main external (analog) trigger input modes below. A detailed description of the modes follows in the next chapters..

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Input Termination
The logic trigger inputs are high impedance input with a 10 kOhm termination against GND. It is possible to program a 50 Ohm termination 
by software to terminate fast trigger signals correctly. If you enable the termination, please make sure, that your trigger source is capable to 
deliver the needed current. Please check carefully whether the source is able to fulfill the trigger input specification given in the technical data 
section.

When enabling the 50 Ohm termination on the multi-purpose inputs, make sure that the source can drive such loads while still maintaining 
the required Low and High levels, as specified in the technical data section.

 

Table 75: Spectrum API: external logic trigger registers and settings for them

Register Value Direction Description

SPC_TRIG_EXT1_AVAILMODES 40501 read Bitmask showing all available trigger modes for external 1 (X0) = logic trigger input

SPC_TRIG_EXT2_AVAILMODES 40502 read Bitmask showing all available trigger modes for external 2 (X1) = logic trigger input

SPC_TRIG_EXT3_AVAILMODES 40514 read Bitmask showing all available trigger modes for external 3 (X2) = logic trigger input

SPC_TRIG_EXT4_AVAILMODES 40516 read Bitmask showing all available trigger modes for external 4 (X3) = logic trigger input

SPC_TRIG_EXT1_MODE 40511 read/write Defines the external trigger mode for the external X0 connector trigger input. The trigger need to be 
added to either OR or AND mask input to be activated.

SPC_TRIG_EXT2_MODE 40512 read/write Defines the external trigger mode for the external X1 connector trigger input. The trigger need to be 
added to either OR or AND mask input to be activated.

SPC_TRIG_EXT3_MODE 40513 read/write Defines the external trigger mode for the external X2 connector trigger input. The trigger need to be 
added to either OR or AND mask input to be activated.

SPC_TRIG_EXT4_MODE 40519 read/write Defines the external trigger mode for the external X3 connector trigger input. The trigger need to be 
added to either OR or AND mask input to be activated.

SPC_TM_NONE 00000000h Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.

SPC_TM_POS 00000001h Sets the trigger mode for external logic (TTL) trigger to detect positive edges.

SPC_TM_NEG 00000002h Sets the trigger mode for external logic (TTL) trigger to detect negative edges.

SPC_TM_BOTH 00000004h Sets the trigger mode for external logic (TTL) trigger to detect positive and negative edges

SPC_TM_HIGH 00000008h Sets the trigger mode for external logic (TTL) trigger to detect HIGH levels.

SPC_TM_LOW 00000010h Sets the trigger mode for external logic (TTL) trigger to detect LOW levels.

Table 76: Spectrum API: trigger OR mask register an settings for external logic trigger

Register Value Direction Description

SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.

SPC_TMASK_EXT1 4h Enable logic trigger X0 input for the OR mask

SPC_TMASK_EXT2 8h Enable logic trigger X1 input for the OR mask

SPC_TMASK_EXT3 10h Enable logic trigger X2 input for the OR mask

SPC_TMASK_EXT4 20h Enable logic trigger X3 input for the OR mask

Register Value Direction Description

SPC_X0_TERM 600100 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

SPC_X1_TERM 600101 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

SPC_X2_TERM 600102 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

SPC_X3_TERM 600103 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

Image 59: trigger engine overview and multi purpose trigger



Trigger modes and related registers External logic trigger (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 106

 

Detailed description of the logic trigger modes

Positive (rising) edge TTL trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The board will trigger on the first rising edge that is detected 
after starting the board.
The next trigger event will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for 
a trigger again.

Example on how to set up the board for positive TTL trigger:

HIGH level TTL trigger

This mode is for detecting the HIGH levels of an external TTL sig-
nal. The board will trigger on the first HIGH level that is detected 
after starting the board. If this condition is fulfilled when the board 
is started, a trigger event will be detected.
The next trigger event will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for 
a trigger again.

Negative (falling) edge TTL trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The board will trigger on the first falling edge that is detected 
after starting the board.
The next trigger event will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for 
a trigger again.

LOW level TTL trigger

This mode is for detecting the LOW levels of an external TTL sig-
nal. The board will trigger on the first LOW level that is detected 
after starting the board. If this condition is fulfilled when the board 
is started, a trigger event will be detected.
The next trigger event will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for 
a trigger again.

Register Value Direction set to Value

SPC_TRIG_EXT1_MODE
SPC_TRIG_EXT2_MODE
SPC_TRIG_EXT3_MODE
SPC_TRIG_EXT4_MODE

40511
40512
40513
40519

read/write SPC_TM_POS 1h

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE, SPC_TM_POS);// Set up ext. TTL trigger to detect positive edges

Register Value Direction set to Value

SPC_TRIG_EXT1_MODE
SPC_TRIG_EXT2_MODE
SPC_TRIG_EXT3_MODE
SPC_TRIG_EXT4_MODE

40511
40512
40513
40519

read/write SPC_TM_HIGH 8h

Register Value Direction set to Value

SPC_TRIG_EXT1_MODE
SPC_TRIG_EXT2_MODE
SPC_TRIG_EXT3_MODE
SPC_TRIG_EXT4_MODE

40511
40512
40513
40519

read/write SPC_TM_NEG 2h

Register Value Direction set to Value

SPC_TRIG_EXT1_MODE
SPC_TRIG_EXT2_MODE
SPC_TRIG_EXT3_MODE
SPC_TRIG_EXT4_MODE

40511
40512
40513
40519

read/write SPC_TM_LOW 10h



Trigger modes and related registers External logic trigger (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 107

Positive (rising) and negative (falling) edges TTL trigger

This mode is for detecting the rising and falling edges of an ex-
ternal TTL signal. The board will trigger on the first rising or falling 
edge that is detected after starting the board.
The next trigger event will then be detected, if the actual record-
ing/replay has finished and the board is armed and waiting for 
a trigger again.

  

 

Register Value Direction set to Value

SPC_TRIG_EXT1_MODE
SPC_TRIG_EXT2_MODE
SPC_TRIG_EXT3_MODE
SPC_TRIG_EXT4_MODE

40511
40512
40513
40519

read/write SPC_TM_BOTH 4h



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 108

Channel Trigger

Overview of the channel trigger registers
The channel trigger modes are the most common modes, compared 
to external equipment like oscilloscopes. The huge variety of different 
channel trigger modes enable you to observe nearly any part of the 
analog signal. This chapter is about to explain the different modes in 
detail. To enable the channel trigger, you have to set the channel
triggermode register accordingly. Therefore you have to choose, if 
you either want only one channel to be the trigger source, or if you 
want to combine two or more channels to a logical OR or a logical 
AND trigger.

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel 0 taken as example here):.

The following table shows the according registers for the two general channel trigger modes. It lists the maximum of the available channel 
mode registers for your card’s series. So it can be that you have less channels installed on your specific card and therefore have less valid 
channel mode registers. If you try to set a channel, that is not installed on your specific card, an error message will be returned.

 

If you want to set up a two channel board to detect only a positive edge on channel 0, you would have to setup the board like the following 
example. Both of the examples either for the single trigger source and the OR trigger mode do not include the necessary settings for the trigger 
levels. These settings are detailed described in the following paragraphs.

Table 77: Spectrum API: channel trigger OR mask register

Register Value Direction Description

SPC_TRIG_CH_ORMASK0 40460 read/write Defines the OR mask for the channel trigger sources.

SPC_TMASK0_CH0 1h Enables channel0 input for the channel OR mask

Table 78: Spectrum API: channel trigger register and available settings for these

Register Value Direction Description

SPC_TRIG_CH_AVAILMODES 40600 read Bitmask, in which all bits of the below mentioned modes for the channel trigger are set, if available.

SPC_TRIG_CH0_MODE 40610 read/write Sets the trigger mode for channel 0. Channel 0 must be enabled in the channel OR/AND mask.

SPC_TRIG_CH1_MODE 40611 read/write Sets the trigger mode for channel 1. Channel 1 must be enabled in the channel OR/AND mask.

SPC_TM_NONE 00000000h Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.

SPC_TM_POS 00000001h Enables the trigger detection for positive edges

SPC_TM_NEG 00000002h Enables the trigger detection for negative edges

SPC_TM_BOTH 00000004h Enables the trigger detection for positive and negative edges

SPC_TM_LOW 00000010h Enables the trigger detection for LOW levels

SPC_TM_HIGH 00000008h Enables the trigger detection for HIGH levels

SPC_TM_POS | SPC_TM_REARM 01000001h Trigger detection for positive edges on level 0. Trigger is armed when crossing level 1 to avoid false trigger on noise

SPC_TM_NEG | SPC_TM_REARM 01000002h Trigger detection for negative edges on level 1. Trigger is armed when crossing level 0 to avoid false trigger on noise

SPC_TM_WINENTER 00000020h Enables the window trigger for entering signals

SPC_TM_WINLEAVE 00000040h Enables the window trigger for leaving signals

SPC_TM_INWIN 00000080h Enables the window trigger for inner signals

SPC_TM_OUTSIDEWIN 00000100h Enables the window trigger for outer signals

SPC_TM_POS | SPC_TM_HYSTERESIS 20000001h Enables the trigger detection for positive edges with hysteresis

SPC_TM_NEG | SPC_TM_HYSTERESIS 20000002h Enables the trigger detection for negative edges with hysteresis

SPC_TM_POS | SPC_TM_REARM | 
SPC_TM_HYSTERESIS

21000001h Trigger detection for positive edges with hysteresis on level 0. Trigger is armed when crossing level 1 to avoid false 
trigger on noise

SPC_TM_NEG | SPC_TM_REARM  | 
SPC_TM_HYSTERESIS

21000002h Trigger detection for negative edges with hysteresis on level 1. Trigger is armed when crossing level 0 to avoid false 
trigger on noise

SPC_TM_LOW | SPC_TM_HYSTERESIS 20000010h Enables the trigger detection for LOW levels with hysteresis

SPC_TM_HIGH | SPC_TM_HYSTERESIS 20000008h Enables the trigger detection for HIGH levels with hysteresis

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE);     // disable software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK0_CH0); // Enable channel 0 in the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_POS );      // Set triggermode of Ch 0 to positive edge

Image 60: trigger engine overview and channel trigger



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 109

If you want to set up a two channel board to detect a trigger event on either a positive edge on channel 0 or a negative edge on channel 1 
you would have to set up your board as the following example shows.

  

Channel trigger level
All of the channel trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some modes like 
the window triggers require even two levels (upper and lower level) to be set.

After the data has been sampled, the upper N data bits are compared with the N bits of the trigger levels. The following table shows the level 
registers and the possible values they can be set to for your specific card.

As the trigger levels are compared to the digitized data, the trigger levels depend on the channels input range. For every input range available 
to your board there is a corresponding range of trigger levels. On the different input ranges the possible stepsize for the trigger levels differs 
as well as the maximum and minimum values. The table further below gives you the absolute trigger levels for your specific card series.

12 bit resolution for the trigger levels:

 

12bit trigger level representation depending on selected input range

 

The following example shows, how to set up a one channel board to trigger on channel 0 with rising edge. It is assumed, that the input range 
of channel 0 is set to the the ±200 mV range. The decimal value for SPC_TRIG_CH0_LEVEL0 corresponds then with 5.0 mV, which is the 
resulting trigger level.

 

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE);   // disable software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK0_CH0 | SPC_TMASK0_CH1); // Enable Ch 0 & Ch 1 
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE, SPC_TM_POS );    // Set triggermode of Ch 0 to positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH1_MODE, SPC_TM_NEG );    // Set triggermode of Ch 1 to negative edge

Table 79: Spectrum API: channel trigger level registers

Register Value Direction Description Range

SPC_TRIG_CH0_LEVEL0 42200 read/write Trigger level 0 channel 0: main trigger level / upper level if 2 levels used -2047 to +2047

SPC_TRIG_CH1_LEVEL0 42201 read/write Trigger level 0 channel 1: main trigger level / upper level if 2 levels used -2047 to +2047

SPC_TRIG_CH0_LEVEL1 42300 read/write Trigger level 1 channel 0: auxiliary trigger level / lower level if 2 levels used -2047 to +2047

SPC_TRIG_CH1_LEVEL1 42301 read/write Trigger level 1 channel 1: auxiliary trigger level / lower level if 2 levels used -2047 to +2047

Table 80: Spectrum API: standard input ranges and representation of trigger level settings in voltage

Input ranges

Triggerlevel ±200 mV ±500 mV ±1 V ±2 V ±5 V ±10 V

2047 +199.902 mV +499.756 mV +999.512 mV +1999.023 mV +4999.559 mV +9999.117 mV

2046 +199.805 mV +499.512 mV +999.023 mV +1999.047 mV +4998.117 mV +9999.234 mV

…

1024 +100.000 mV +250.000 mV +500.000 mV +1000.000 mV +2500.000 mV +5000.000 mV

…

2 +0.195 mV +0.488 mV +0.977 mV +1.953 mV +4.883 mV +9.766 mV

1 +0.098 mV +0.244 mV +0.488 mV +0.977 mV +2.441 mV +4.8835 mV

0 0 V 0 V 0 V 0 V 0 V 0 V

-1 -0.098 mV -0.244 mV -0.488 mV -0.977 mV -2.441 mV -4.8835 mV

-2 -0.195 mV -0.488 mV -0.977 mV -1.953 mV -4.883 mV -9.766 mV

…

-1024 -100.000 mV -250.000 mV -500.000 mV -1000.000 mV -2500.000 mV -5000.000 V

…

-2046 -199.805 mV -499.512 mV -999.023 mV -1999.047 mV -4998.117 mV -9999.234 mV

-2047 -199.902 mV -499.756 mV -999.512 mV -1999.023 mV -4999.559 mV -9999.117 mV

Step size 97.66 µV 244.14 µV 488.28 µV 976.56 µV 2.441 mV 4.883 mV

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_NONE);     // disable default software trigger
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_MODE,   SPC_TM_POS);     // Setting up channel trig (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH0_LEVEL0, 51);             // Sets 12bit triggerlevel to 5.0 mV
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ORMASK0, SPC_TMASK0_CH0); // and enable it within the OR mask



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 110

Reading out the number of possible trigger levels
The Spectrum driver also contains a register that holds the value of the maximum possible different trigger levels considering the above men-
tioned exclusion of the most negative possible value. This is useful, as new drivers can also be used with older hardware versions, because 
you can check the trigger resolution during run time. The register is shown in the following table:

In case of a board that uses 8 bits for trigger detection the returned value would 
be 127, as either the zero and 127 positive and negative values are possi-
ble.The resulting trigger step width in mV can easily be calculated from the re-
turned value. It is assumed that you know the actually selected input range.

To give you an example on how to use this formula we assume, that the
±1.0 V input range is selected and the board uses 8 bits for trigger detection.
The result would be 7.81 mV, which is the step width for your type of board 
within the actually chosen input range.

 

Table 81: Spectrum API: trigger level count register

Register Value Direction Description

SPC_READTRGLVLCOUNT 2500 r Contains the number of different possible trigger levels meaning ± of the value.

Trigger step width
Input Rangemax

Number of trigger levels 1+
---------------------------------------------------------------------------------------------------------------------=

Trigger step width +1000 mV
127 1+

---------------------------------------------=



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 111

Detailed description of the channel trigger modes
For all channel trigger modes, the OR mask must contain the corresponding input channels (channel 0 taken as example here):.

Channel trigger on positive edge

The analog input is continuously sampled with the selected 
sample rate. If the programmed trigger level is crossed by 
the channel’s signal from lower values to higher values (ris-
ing edge) then the triggerevent will be detected.

These edge triggered channel trigger modes correspond to 
the trigger possibilities of usual oscilloscopes.

Channel trigger on negative edge

The analog input is continuously sampled with the selected 
sample rate. If the programmed trigger level is crossed by 
the channel’s signal from higher values to lower values (fall-
ing edge) then the triggerevent will be detected.

These edge triggered channel trigger modes correspond to 
the trigger possibilities of usual oscilloscopes.

Channel trigger on positive and negative edge

The analog input is continuously sampled with the selected 
sample rate. If the programmed trigger level is crossed by 
the channel’s signal (either rising or falling edge) the trig-
gerevent will be detected.

These edge triggered channel trigger modes correspond to 
the trigger possibilities of usual oscilloscopes.

Table 82: Spectrum API: channel trigger OR mask register

Register Value Direction Description

SPC_TRIG_CH_ORMASK0 40460 read/write Defines the OR mask for the channel trigger sources.

SPC_TMASK0_CH0 1h Enables channel0 input for the channel OR mask

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS 1h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG 2h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_BOTH 4h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 112

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected 
sample rate. If the programmed re-arm level is crossed from 
lower to higher values, the trigger engine is armed and 
waiting for trigger. If the programmed trigger level is 
crossed by the channel’s signal from lower values to higher 
values (rising edge) then the triggerevent will be detected 
and the trigger engine will be disarmed. A new trigger 
event is only detected if the trigger engine is armed again. 

The re-arm trigger modes can be used to prevent the board 
from triggering on wrong edges in noisy signals.

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected 
sample rate. If the programmed re-arm level is crossed from 
higher to lower values, the trigger engine is armed and 
waiting for trigger. If the programmed trigger level is 
crossed by the channel’s signal from higher values to lower 
values (falling edge) then the triggerevent will be detected 
and the trigger engine will be disarmed. A new trigger 
event is only detected, if the trigger engine is armed again. 

The re-arm trigger modes can be used to prevent the board 
from triggering on wrong edges in noisy signals.

Channel window trigger for entering signals

The analog input is continuously sampled with the selected 
sample rate. The upper and the lower level define a win-
dow. Every time the signal enters the window from the out-
side, a triggerevent will be detected.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the re-arm level relatively to the channel’s input range board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Defines the re-arm level relatively to the channels’s input range board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINENTER 00000020h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 113

Channel window trigger for leaving signals

The analog input is continuously sampled with the selected 
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in-
side, a triggerevent will be detected.

Channel hysteresis trigger on positive edge
This trigger mode will generate an internal gate signal that 
can be useful for masking a second trigger event generated 
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the programmed trigger level is crossed by the channel’s 
signal from lower values to higher values (rising edge) the 
gate starts.

When the signal crosses the programmed hysteresis level 
from higher values to lower values (falling edge) then the 
gate will stop.

As this mode is purely edge-triggered, the high level at the 
cards start time does not trigger the board.

Channel hysteresis trigger on negative edge
This trigger mode will generate an internal gate signal that 
can be useful for masking a second trigger event generated 
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the programmed trigger level is crossed by the channel’s 
signal higher values to lower values (falling edge) the gate 
starts.

When the signal crosses the programmed hysteresis level 
from lower values to higher values (rising edge) then the 
gate will stop.

As this mode is purely edge-triggered, the low level at the 
cards start time does not trigger the board.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_HYSTERESIS 20000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_HYSTERESIS 20000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 114

Channel re-arm hysteresis trigger on positive edge
This trigger mode will generate an internal gate signal that 
can be useful for masking a second trigger event generated 
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the programmed re-arm/hysteresis level is crossed from 
lower to higher values, the trigger engine is armed and 
waiting for trigger. If the programmed trigger level is 
crossed by the channel’s signal from lower values to higher 
values (rising edge) then the gate starts and the trigger en-
gine will be disarmed. If the programmed re-arm/hysteresis 
level is crossed by the channel’s signal from higher values 
to lower values (falling edge) the gate stops.

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from 
triggering on wrong edges in noisy signals.

Channel re-arm hysteresis trigger on negative edge
This trigger mode will generate an internal gate signal that 
can be useful for masking a second trigger event generated 
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the programmed re-arm/hysteresis level is crossed from 
higher to lower values, the trigger engine is armed and 
waiting for trigger. If the programmed trigger level is 
crossed by the channel’s signal from higher values to lower 
values (falling edge) then the gate starts and the trigger en-
gine will be disarmed. If the programmed re-arm/hysteresis 
level is crossed by the channel’s signal from lower values to 
higher values (rising edge) the gate stops.

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from 
triggering on wrong edges in noisy signals.

High level hysteresis trigger
This trigger mode will generate an internal gate signal that 
can be useful for masking a second trigger event generated 
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the signal is equal or higher than the programmed trigger 
level the gate starts.

When the signal is lower than the programmed hysteresis lev-
el the gate will stop.

As this mode is level-triggered, the high level at the cards start 
time does trigger the board.

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM | SPC_TM_HYSTERESIS 21000001h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the re-arm and hysteresis level relatively to the channel’s input 
range

board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM | SPC_TM_HYSTERESIS 21000002h

SPC_TRIG_CH0_LEVEL0 42200 read/write Defines the trigger level relatively to the channel’s input range board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the re-arm and hysteresis level relatively to the channel’s input 
range

board dependant

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_HIGH | SPC_TM_HYSTERESIS 20000008h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant



Trigger modes and related registers Channel Trigger

(c) Spectrum Instrumentation GmbH 115

Low level hysteresis trigger
This trigger mode will generate an internal gate signal that 
can be useful for masking a second trigger event generated 
by a different mode. The analog input is continuously sam-
pled with the selected sample rate.

If the signal is equal or lower than the programmed trigger 
level the gate starts.

When the signal is higher than the programmed hysteresis 
level the gate will stop.

As this mode is level-triggered, the high level at the cards start 
time does trigger the board.

 

    

Register Value Direction set to Value

SPC_TRIG_CH0_MODE 40610 read/write SPC_TM_LOW | SPC_TM_HYSTERESIS 20000010h

SPC_TRIG_CH0_LEVEL0 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

SPC_TRIG_CH0_LEVEL1 42300 read/write Defines the hysteresis level relatively to the channel’s input range board dependant



Multi Purpose I/O Lines On-board I/O lines (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 116

Multi Purpose I/O Lines

On-board I/O lines (X0, X1, X2, X3)
The M5i series cards and the related digitizerNETBOX and
generatorNETBOX products have four multi purpose I/O lines that 
can be used for a wide variety of functions to help the interconnection 
with external equipment. The functionality of these multi purpose I/O 
lines can be software programmed and each of these lines can either 
be used for input or output.

The multi purpose I/O lines may be used as status outputs such as 
trigger output or internal arm/run as well as for asynchronous I/O to 
control external equipment as well as additional digital input lines 
that are sampled synchronously with the analog data.

The multi purpose I/O lines are available on the front plate and la-
beled with X0 (line 0) through X3 (line 3). As default these lines are 
switched off.

As default (power-on and after reset command) the I/O capable lines are switched off and hence are not 
actively driven. Hence the on-board 10k Ohm pull-up resistors are pulling these lines to logic HIGH. If a logic 
LOW is required, external lower-value (1k Ohm) pull-down resistors might be used.

Please be careful when programming these lines as an output whilst maybe still being connected with an 
external signal source, as that may damage components either on the external equipment or on the card 
itself.

Programming the behavior
Each multi purpose I/O line can be individually programmed. Please check the available modes by reading the SPCM_X0_AVAILMODES, 
SPCM_X1_AVAILMODES, SPCM_X2_AVAILMODES and SPCM_X3_AVAILMODES register first. The available modes may differ from card 
to card and may be enhanced with new driver/firmware versions to come.

Table 83: Spectrum API: multi-purpose I/O lines registers and available register settings

Register Value Direction Description

SPCM_X0_AVAILMODES 47210 read Bitmask with all bits of the below mentioned modes showing the available modes for (X0)

SPCM_X1_AVAILMODES 47211 read Bitmask with all bits of the below mentioned modes showing the available modes for (X1)

SPCM_X2_AVAILMODES 47212 read Bitmask with all bits of the below mentioned modes showing the available modes for (X2)

SPCM_X3_AVAILMODES 47213 read Bitmask with all bits of the below mentioned modes showing the available modes for (X3)

SPCM_X0_MODE 47200 read/write Defines the mode for (X0). Only one mode selection is possible to be set at a time

SPCM_X1_MODE 47201 read/write Defines the mode for (X1). Only one mode selection is possible to be set at a time

SPCM_X2_MODE 47202 read/write Defines the mode for (X2). Only one mode selection is possible to be set at a time

SPCM_X3_MODE 47203 read/write Defines the mode for (X3). Only one mode selection is possible to be set at a time

SPCM_XMODE_DISABLE 00000000h No mode selected. Output is tristate (default setup)

SPCM_XMODE_ASYNCIN 00000001h Connector is programmed for asynchronous input. Use SPCM_XX_ASYNCIO to read data asynchronous as shown in 
next chapter.

SPCM_XMODE_ASYNCOUT 00000002h Connector is programmed for asynchronous output. Use SPCM_XX_ASYNCIO to write data asynchronous as shown 
in next chapter.

SPCM_XMODE_DIGIN 00000004h A/D cards only: 
Connector is programmed for synchronous digital input. For each analog channel, one digital channel X0/X1/X2 is 
integrated into the ADC data stream. Depending on the ADC resolution of your card the resulting merged samples 
can have different formats. Please check the „Sample format“ chapter for more details. Please note that automatic 
sign extension of analog data is ineffective as soon as one digital input line is activated and the software must prop-
erly mask out the digital bits.

SPCM_XMODE_DIGOUT 00000008h D/A cards only:
Connector is programmed for synchronous digital output. Digital channels can be „included“ within the analog sam-
ples and synchronously replayed along. Requires additional MODE bits to be set along with this flag, as explained 
later on.

SPCM_XMODE_TRIGOUT 00000020h Connector is programmed as trigger output and shows the trigger detection. The trigger output goes HIGH as soon as 
the trigger is recognized. After end of acquisition it is LOW again. In Multiple Recording/Gated Sampling/ABA 
mode it goes LOW after the acquisition of the current segment stops. In FIFO single mode the trigger output is HIGH 
until FIFO mode is stopped.

SPCM_XMODE_RUNSTATE 00000100h Connector shows the current run state of the card. If acquisition/output is running the signal is HIGH. If card has 
stopped the signal is LOW.

SPCM_XMODE_ARMSTATE 00000200h Connector shows the current ARM state of the card. If the card is armed and ready to receive a trigger the signal is 
HIGH. If the card isn’t running or the card is still acquiring pretrigger data or the trigger has been detected the signal 
is LOW.

SPCM_XMODE_CONTOUTMARK 00002000h Generator Cards only: outputs a HIGH pulse as continuous marker signal for continuous replay mode. The marker sig-
nal length is ½ of the programmed memory size.

SPCM_XMODE_PULSEGEN 00080000h (optional):
Connector reflects the output of the same index pulse generator (X0 output from pulse generator 0, X1 from pulse gen-
erator 1 etc.). For details on the pulse generator option please consult the “Pulse Generator (Option)” chapter.

Image 61: trigger overview with multi-purpose lines marked



Multi Purpose I/O Lines On-board I/O lines (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 117

Please note that a change to the SPCM_X0_MODE, SPCM_X1_MODE, SPCM_X2_MODE or SPCM_X3_MODE reg-
ister will only be updated with the next call to either the M2CMD_CARD_START or M2CMD_CARD_WRITESETUP 
register. For further details please see the relating chapter on the M2CMD_CARD registers.

Input Termination
The logic trigger inputs are high impedance input with a 10 kOhm termination against GND. It is possible to program a 50 Ohm termination 
by software to terminate fast trigger signals correctly. If you enable the termination, please make sure, that your trigger source is capable to 
deliver the needed current. Please check carefully whether the source is able to fulfill the trigger input specification given in the technical data 
section.

When enabling the 50 Ohm termination on the multi-purpose inputs, make sure that the source can drive such loads while still maintaining 
the required Low and High levels, as specified in the technical data section.

 

Using asynchronous I/O
To use asynchronous I/O on the multi purpose I/O lines it is first necessary to switch these lines to the desired asynchronous mode by pro-
gramming the above explained mode registers. As a special feature asynchronous input can also be read if the mode is set to trigger input 
or digital input.

Example of asynchronous write and read. We write a high pulse on output X1 and wait for a high level answer on input X0:

Special behavior of trigger output
As the driver of the M5i series is the same as the driver for the M2i/M3i series and some old software may rely on register structure of the 
M2i/M3i card series, there is a special compatible trigger output register that will work according to the M2i/M3i series style. It is not rec-
ommended to use this register unless you’re writing software for multiple card series:

The SPC_TRIG_OUTPUT register overrides the multi purpose I/O settings done by SPCM_X0_MODE,
SPCM_X1_MODE, SPCM_X2_MODE and SPCM_X3_MODE and vice versa.
Do not use both methods together from within one program.

 

Register Value Direction Description

SPC_X0_TERM 600100 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

SPC_X1_TERM 600101 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

SPC_X2_TERM 600102 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

SPC_X3_TERM 600103 read/write A „1“ enables the 50 Ohm termination for X0. A „0“ sets the high impedance termination.

Table 84: Spectrum API: asynchronous I/O register settings of the multi-purpose I/O registers

Register Value Direction Description

SPCM_XX_ASYNCIO 47220 read/write Connector X0 is linked to bit 0 of the register, connector X1 is linked to bit 1, connector X2 is linked 
to bit 2 while connector X3 is linked to bit 3 of this register. Data is written/read immediately without 
any relation to the currently used sampling rate or mode. If a line is programmed to output, reading 
this line asynchronously will return the current output level.

spcm_dwSetParam_i32 (hDrv, SPCM_X0_MODE, SPCM_XMODE_ASYNCIN);   // X0 set to asynchronous input
spcm_dwSetParam_i32 (hDrv, SPCM_X1_MODE, SPCM_XMODE_ASYNCOUT);  // X1 set to asynchronous output
spcm_dwSetParam_i32 (hDrv, SPCM_X2_MODE, SPCM_XMODE_TRIGOUT);   // X2 set to trigger output

spcm_dwSetParam_i32 (hDrv, SPCM_XX_ASYNCIO, 0);                 // programming a high pulse on output
spcm_dwSetParam_i32 (hDrv, SPCM_XX_ASYNCIO, 2);
spcm_dwSetParam_i32 (hDrv, SPCM_XX_ASYNCIO, 0);

do {
    spcm_dwGetParam_i32 (hDrv, SPCM_XX_ASYNCIO, &lAsyncIn);     // read input in a loop
} while ((lAsyncIn & 1) == 0);                                   // until X0 is going to high level

Table 85: Spectrum API: additional trigger output register for compatibility with older hardware

Register Value Direction Description

SPC_TRIG_OUTPUT 40100 read/write M2i style trigger output programming. Write a „1“ to enable:
- X3 disabled (SPCM_X3_MODE = SPCM_XMODE_DISABLE) .
- X2 trigger output (SPCM_X2_MODE = SPCM_XMODE_TRIGOUT).
- X1 arm state (SPCM_X1_MODE = SPCM_XMODE_ARMSTATE).
- X0 run state (SPCM_X0_MODE = SPCM_XMODE_RUNSTATE).

Write a „0“ to disable all three outputs:
- SPCM_X0_MODE .. SPCM_X3_MODE = SPCM_XMODE_DISABLE



Multi Purpose I/O Lines On-board I/O lines (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 118

Synchronous digital inputs
The cards of the M5i series allow a very detailed setup on how to optionally record synchronous digital channels along with analog acqui-
sition. The SPC_DIGMODEx register allows the setup separately for every analog channel. The table below shows the related registers and 
the values that correspond with the different possibilities. The mask and mode and mode values have to properly be combined. This is shown 
in the example below the tables:

 Each mask constant has to be bitwise AND combined with a source/mode constant, to define which digital source will be inserted at which 
position of the analog sample. The SPC_DIGMODEx register defines then, what analog channel this is applied to.

The driver will automatically scale the analog samples prior to inserting the digital channels to keep the channel at the maximum possible 
resolution.

Sample Format
The card is using 12 bit A/D samples, that are stored in twos complement in two 8 bit data byte. 12 bit resolution means that data is ranging 
from -2048…to…+2048. Data is stored in little-endian format, the upper 8 bit come first and the lower 8 bit second.:

 

Please note that automatic sign extension of analog data is ineffective as soon as one digital input line is 
activated and the software must properly mask out all the digital bits from the samples.

The digital source has to be properly set to input direction to be a valid digital source. Also the analog channel 
into that the digital signals shall be routed to must be activated properly for acquisition as described in the 
„Channel Selection“ passage.

Table 86: Spectrum API: digital input options registers

Register Value Direction Description

SPC_DIGMODE0 47250 read/write Set the digital input sources for channel 0.

SPC_DIGMODE1 47251 read/write Set the digital input sources for channel 1.

SPC_DIGMODE2 47252 read/write Set the digital input sources for channel 2.

SPC_DIGMODE3 47253 read/write Set the digital input sources for channel 3.

SPCM_DIGMODE_OFF 00000000h Disable acquisition of digital data for the masked analog bit (see masks below).

SPCM_DIGMODE_X0 21084000h Enable acquisition of multi-purpose input X0 for the masked analog bit (see masks below).

SPCM_DIGMODE_X1 294A5000h Enable acquisition of multi-purpose input X1 for the masked analog bit (see masks below).

SPCM_DIGMODE_X2 318C6000h Enable acquisition of multi-purpose input X2 for the masked analog bit (see masks below).

SPCM_DIGMODE_X3 39CE7000h Enable acquisition of multi-purpose input X3 for the masked analog bit (see masks below).

DIGMODEMASK_BIT15 F8000000h Enable acquisition of a digital source (sources see above) into bit15 of the analog sample.

DIGMODEMASK_BIT14 07C00000h Enable acquisition of a digital source (sources see above) into bit14 of the analog sample.

DIGMODEMASK_BIT13 003E0000h Enable acquisition of a digital source (sources see above) into bit13 of the analog sample.

DIGMODEMASK_BIT12 0001F000h Enable acquisition of a digital source (sources see above) into bit12 of the analog sample.

Table 87: data sample format in standard mode and with digital inputs enable

Standard Mode Digital inputs enabled

SPCM_XMODE_DIGIN

M5i.33xx M5i.33xx

Data bit 12 bit ADC resolution 12 bit ADC resolution

D15 ADX Bit 11 (sign extension) Multi-Purpose XIO3

D14 ADX Bit 11 (sign extension) Multi-Purpose XIO2

D13 ADX Bit 11 (sign extension) Multi-Purpose XIO1

D12 ADX Bit 11 (sign extension) Multi-Purpose XIO0

D11 ADx Bit 11 (MSB) ADx Bit 11 (MSB)

D10 ADx Bit 10 ADx Bit 10

D9 ADx Bit 9 ADx Bit 9

D8 ADx Bit 8 ADx Bit 8

D7 ADx Bit 7 ADx Bit 7

D6 ADx Bit 6 ADx Bit 6

D5 ADx Bit 5 ADx Bit 5

D4 ADx Bit 4 ADx Bit 4

D3 ADx Bit 3 ADx Bit 3

D2 ADx Bit 2 ADx Bit 2

D1 ADx Bit 1 ADx Bit 1

D0 ADx Bit 0 (LSB) ADx Bit 0 (LSB)



Multi Purpose I/O Lines On-board I/O lines (X0, X1, X2, X3)

(c) Spectrum Instrumentation GmbH 119

The following example shows how to enable a different number of digital channels (one and two respectively) on two different analog chan-
nels:

The following example shows how to enable all four digital channels provided via the multi-purpose lines X0, X1, X2 and X3 to one channel:

  

spcm_dwSetParam_i32 (hDrv, SPCM_X1_MODE, SPCM_XMODE_DIGIN);  // X1 set to synchronous input
spcm_dwSetParam_i32 (hDrv, SPCM_X2_MODE, SPCM_XMODE_DIGIN);  // X2 set to synchronous input
spcm_dwSetParam_i32 (hDrv, SPCM_X3_MODE, SPCM_XMODE_DIGIN);  // X3 set to synchronous input

// Enable acquisition of X1 input into bit15 of analog channel 0.
// Resulting Ch0 A/D samples will be 12bit samples with 3 bit sign extension and digital bit in MSB.
uint32 dwValue = (DIGMODEMASK_BIT15 & SPCM_DIGMODE_X1);
spcm_dwSetParam_i32 (hDrv, SPC_DIGMODE0, dwValue);

// Enable acquisition of X2 input into bit15 and X3 input into bit14 of analog channel 1.
// Resulting Ch1 A/D samples will be 14bit.
dwValue = (DIGMODEMASK_BIT15 & SPCM_DIGMODE_X2) | (DIGMODEMASK_BIT14 & SPCM_DIGMODE_X3);
spcm_dwSetParam_i32 (hDrv, SPC_DIGMODE1, dwValue);

spcm_dwSetParam_i32 (hDrv, SPCM_X0_MODE, SPCM_XMODE_DIGIN);  // X0 set to synchronous input
spcm_dwSetParam_i32 (hDrv, SPCM_X1_MODE, SPCM_XMODE_DIGIN);  // X1 set to synchronous input
spcm_dwSetParam_i32 (hDrv, SPCM_X2_MODE, SPCM_XMODE_DIGIN);  // X2 set to synchronous input
spcm_dwSetParam_i32 (hDrv, SPCM_X3_MODE, SPCM_XMODE_DIGIN);  // X3 set to synchronous input

// define and clear a temporary variable
uint32 dwValue = 0;

// add four sources (X0, X1, X2 and X3) at three different positions (bit15, bit14 and bit13)
dwValue |= (DIGMODEMASK_BIT15 & SPCM_DIGMODE_X3);
dwValue |= (DIGMODEMASK_BIT14 & SPCM_DIGMODE_X2);
dwValue |= (DIGMODEMASK_BIT13 & SPCM_DIGMODE_X1);
dwValue |= (DIGMODEMASK_BIT12 & SPCM_DIGMODE_X0);

// and write value to channel 0 digmode register. Resulting Ch0 A/D samples will be 13bit.
spcm_dwSetParam_i32 (hDrv, SPC_DIGMODE0, dwValue);



Mode Multiple Recording Recording modes

(c) Spectrum Instrumentation GmbH 120

Mode Multiple Recording
The Multiple Recording mode allows the acquisition of data 
blocks with multiple trigger events without restarting the hard-
ware.

The on-board memory will be divided into several segments of 
the same size. Each segment will be filled with data when a trig-
ger event occurs (acquisition mode).

As this mode is totally controlled in hardware there is a very 
small re-arm time from end of one segment until the trigger de-
tection is enabled again. You’ll find that re-arm time in the tech-
nical data section of this manual.

The following table shows the register for defining the structure 
of the segments to be recorded with each trigger event.

Each segment in acquisition mode can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size 
and the posttrigger, while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using Multiple Recording the maximum pretrigger is limited depending on the number of active chan-
nels. When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. 
Please have a look at the table further below to see the maximum pretrigger length that is possible.

 

Recording modes

Standard Mode
With every detected trigger event one data block is filled with data. The length of one multiple recording segment is set by the value of the 
segment size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.
Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Multiple Recording. For detailed 
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

FIFO Mode
The Multiple Recording in FIFO Mode is similar to the Multiple Recording in Standard Mode. In contrast to the standard mode it is not nec-
essary to program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block 
by the driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data process-
ing by the user program. This mode significantly reduces the amount of data to be transferred on the PCI bus as gaps of no interest do not 
have to be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Multiple Recording.
The advantage of Multiple Recording in FIFO mode is that you can stream data online to the host system. You can make real-time data pro-
cessing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Multiple Recording. For 
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Table 88: Spectrum API: software registers for Multiple Recording mode setup

Register Value Direction Description

SPC_POSTTRIGGER 10100 read/write Acquisition only: defines the number of samples to be recorded per channel after the trigger event.

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording segment: the total number of samples to be recorded per channel 
after detection of one trigger event including the time recorded before the trigger (pre trigger).

Table 89: Spectrum API: card mode register and multiple recording settings

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_STD_MULTI 2 Enables Multiple Recording for standard acquisition.

Table 90: Spectrum API: memory and loop registers with related multiple recording settings

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.

Table 91: Spectrum API: card mode register and multiple replay FIFO mode settings

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_FIFO_MULTI 32 Enables Multiple Recording for FIFO acquisition.

Image 62: Drawing of Multiple Recording acquisition



Mode Multiple Recording Limits of pre trigger, post trigger, memory size

(c) Spectrum Instrumentation GmbH 121

The number of segments to be recorded must be set separately with the register shown in the following table:

 

Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please 
keep in mind that each sample needs 2 bytes of memory to be stored. Minimum memory size as well as minimum and maximum post trigger 
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account. 
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table 
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase 
according to the complete installed memory

All figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be 
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

 

Multiple Recording and Timestamps
Multiple Recording is well matching with the timestamp option. If timestamp 
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right. 

Please keep in mind that the trigger events are timestamped, not the begin-
ning of the acquisition. The first sample that is available is at the time position 
of [Timestamp - Pretrigger]. 

The programming details of the timestamp option is explained in an extra 
chapter.

 

Table 92: Spectrum API: loops register settings when using Multiple Replay FIFO mode

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded

0 Recording will be infinite until the user stops it.

1 … [4G - 1] Defines the total segments to be recorded.

Table 93: Spectrum API: Limits of pre trigger, post trigger and memory size

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 Ch Standard Single 64 Mem 32 32 Mem - 32 32 32 256G - 32 32 not used not used

(defined by mem and post)
Standard Multi 64 Mem 32 32 32k 32 32 Mem-32 32 64 Mem 32 not used

(defined by segment and post) (Limited by max pretrigger)
FIFO Single not used 32 32k 32 not used 64 8G - 32 32 0 () 4G - 1 1
FIFO Multi not used 32 32k 32 32 256G-32 32 64 pre+post 32 0 () 4G - 1 1

(defined by segment and post) (Limited by max pretrigger)
2 Ch Standard Single 64 Mem/2 32 32 Mem/2 - 32 32 32 256G - 32 32 not used not used

(defined by mem and post)
Standard Multi 64 Mem/2 32 32 16k 32 32 Mem/2-32 32 64 Mem/2 32 not used

(defined by segment and post) (Limited by max pretrigger)
FIFO Single not used 32 16k 32 not used 64 8G - 32 32 0 () 4G - 1 1
FIFO Multi not used 32 16k 32 32 256G-32 32 64 pre+post 32 0 () 4G - 1 1

(defined by segment and post) (Limited by max pretrigger)

Table 94: Spectrum-API: maximum memory sizes for different memory upgrade options

Installed Memory

2 GSample (4 GByte) 8 GSample (16 GByte)

(Option: M5i.xxx-MEM8GS)
Mem 2 GSample 8 GSample
Mem / 2 1 GSample 4 GSample

Image 63: drawing of Multiple Recording Acquisition with Timestamps



Mode Multiple Recording Trigger Modes

(c) Spectrum Instrumentation GmbH 122

Trigger Modes
When using Multiple Recording all of the card’s trigger modes can be used including the software trigger. For detailed information on the 
available trigger modes, please take a look at the relating chapter earlier in this manual.



Mode Multiple Recording Programming examples

(c) Spectrum Instrumentation GmbH 123

Programming examples
The following example shows how to set up the card for Multiple Recording in standard mode.

The following example shows how to set up the card for Multiple Recording in FIFO mode.

 

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI);  // Enables Standard Multiple Recording

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE,   1024);  // Set the segment size to 1024 samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER,    768);  // Set the posttrigger to 768 samples and therefore
                                                      // the pretrigger will be 256 samples
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE,       4096);  // Set the total memsize for recording to 4096 samples
                                                      // so that actually four segments will be recorded

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE,  SPC_TM_POS); // Set trigmode to ext. TTL mode (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_MULTI); // Enables FIFO Multiple Recording

spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE,   2048); // Set the segment size to 2048 samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER,   1920); // Set the posttrigger to 1920 samples and therefore
                                                     // the pretrigger will be 128 samples
spcm_dwSetParam_i64 (hDrv, SPC_LOOPS           256); // 256 segments will be recorded

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE,  SPC_TM_NEG); // Set trigmode to ext. TTL mode (falling edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask



Mode 8 bit Storage (Low-Resolution) Overview

(c) Spectrum Instrumentation GmbH 124

Mode 8 bit Storage (Low-Resolution)

Overview
Starting with firmware version V5, the cards of the M5i.33xx series allow to optionally reduce the resolution of the A/D samples from their 
native 12 bit down to 8 bit resolution, such that each sample will only occupy one byte in memory instead of the standard two bytes required. 
This does not only doubles the size of the installed on-board memory, but also reduces the required bandwidth over the PCIe bus as well as 
to the storage devices, such as SSD or HDD.

Available acquisition modes
The following modes are compatible with the data conversion modes of the M5i.33xx series cards and hence can be used to acquire data 
in a reduced sample resolution:

Please note the different limits of the memory settings (pre trigger, post trigger etc.) below compared to using 
the native card resolution.

Enabling hardware data conversion
The data conversion modes allow the conversion of acquired sample data in on the fly within the firmware from the card’s native resolution 
of 12bit down to 8bit and the proper one should be chosen, depending on the cards original or native resolution:

Table 95: Spectrum API: 8 bit storage mode acquisition mode registers

Mode Value Available on Description

SPC_REC_STD_SINGLE 1h all cards Data acquisition to on-board memory for one single trigger event.

SPC_REC_STD_MULTI 2h all cards Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size. 
This mode is described in greater detail in a special chapter about the Multiple Recording option.

SPC_REC_FIFO_SINGLE 10h all cards Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO 
buffer.

SPC_REC_FIFO_MULTI 20h all cards Continuous data acquisition for multiple trigger events.

Table 96: Spectrum API: data conversion registers and register settings

Register Value Direction Description

SPC_DATACONVERSION 201400 read/write Defines the data conversion mode.

SPC_AVAILDATACONVERSION 201401 read Read out the available data conversion modes.

SPCM_DC_NONE 0h The original data format will be used and no hardware data conversion will be done.

SPCM_DC_12BIT_TO_8BIT 200h 12 bit input data is assumed and the resulting samples will be 8bit.



Mode 8 bit Storage (Low-Resolution) Sample format

(c) Spectrum Instrumentation GmbH 125

Sample format
The hardware data conversion shifts the original data words down by either six bits or eight bits, no matter what their content is or 
what channel they belong to. In case that any digital channels are included included in the original samples, these might also be 
shifted down, depending on their original location in the samples:

Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please 
keep in mind that each sample with enabled data conversion only needs 1 bytes of memory to be stored. Minimum memory size as well as 
minimum and maximum post trigger limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account. 
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table 
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase 
according to the complete installed memory

All figures listed here are given in samples. An entry of [8G - 32] means [8 GSamples - 32] = 8,589,934,560 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Table 97: Spectrum API: sample format for different cards with data conversion mode activated

Data Conversion  disabled Data Conversion  enabled

SPCM_DC_12BIT_TO_8BIT

M5i.33xx M5i.33xx

Data bit 12 bit ADC resolution reduced to 8 bit sample resolution

D15 ADx Bit 11 (sign extension) not used

D14 ADx Bit 11 (sign extension)

D13 ADx Bit 11 (sign extension)

D12 ADx Bit 11 (sign extension)

D11 ADx Bit 11 (MSB)

D10 ADx Bit 10

D9 ADx Bit 9

D8 ADx Bit 8

D7 ADx Bit 7 D11 (MSB)

D6 ADx Bit 6 D10

D5 ADx Bit 5 D9

D4 ADx Bit 4 D8

D3 ADx Bit 3 D7

D2 ADx Bit 2 D6

D1 ADx Bit 1 D5

D0 ADx Bit 0 (LSB) D4 (LSB)

Table 98: Spectrum API: Limits of pre trigger, post trigger and memory size when using 8 bit mode

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step
1 Ch Standard Single 128 Mem 64 64 Mem - 64 64 64 256G - 64 64 not used not used

(defined by mem and post)
Standard Multi 128 Mem 64 64 32k 64 64 Mem-64 64 128 Mem 64 not used

(defined by segment and post) (Limited by max pretrigger)
FIFO Single not used 64 32k 64 not used 128 8G - 64 64 0 () 4G - 1 1
FIFO Multi not used 64 32k 64 64 256G-64 64 128 pre+post 64 0 () 4G - 1 1

(defined by segment and post) (Limited by max pretrigger)
2 Ch Standard Single 128 Mem/2 64 64 Mem/2 - 64 64 64 256G - 32 64 not used not used

(defined by mem and post)
Standard Multi 128 Mem/2 64 64 16k 64 64 Mem/2-64 64 128 Mem/2 64 not used

(defined by segment and post) (Limited by max pretrigger)
FIFO Single not used 64 16k 64 not used 128 8G - 64 64 0 () 4G - 1 1
FIFO Multi not used 64 16k 64 64 256G-64 64 128 pre+post 64 0 () 4G - 1 1

(defined by segment and post) (Limited by max pretrigger)

Table 99: Spectrum-API: maximum memory sizes for different memory upgrade options when using 8 bit mode

Installed Memory

4 GSample (4 GByte) 16 GSample (16 GByte)

(Option: M5i.xxx-MEM8GS)
Mem 4 GSample 16 GSample
Mem / 2 2 GSample 8 GSample



Mode 8 bit Storage (Low-Resolution) Converting reduced ADC samples to voltage values

(c) Spectrum Instrumentation GmbH 126

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be 
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

 

Converting reduced ADC samples to voltage values
When converting the reduced samples into voltage values the same principles and formulas apply as for the native 12 bit samples, as de-
scribed earlier in this manual. However the instead of reading out the native ADC resolution from the driver, the reduced 8 bit resolution must 
be used instead.

Now that the board uses 8 bit samples that provides the full ADC code (without 
reserving any bits) the new value for ADCmax would be 128. The the peak val-
ue for a ±1.0 V input range would be 1.0 V (or 1000 mv).

A returned reduced sample value of for example +49 (decimal, two’s comple-
ment, signed representation) would then convert to:

A returned sample value of for example -55 (decimal) would then convert to:

 

VIn ADCCode
InputRangepeak

ADCmax
-------------------------------------------------------------------------------------=

Vin 49 1000 mV
128

---------------------------------------------- 382.81 mV= =

Vin 55– 1000 mV
128

---------------------------------------------- 429.69 mV–= =



Timestamps General information

(c) Spectrum Instrumentation GmbH 127

Timestamps

General information
The timestamp function is used to record trigger events relative to the beginning of the measurement, relative to a fixed time-zero point or 
synchronized to an external reset clock. The reset clock can come from a radio clock, a GPS signal or from any other external machine.

The timestamp is internally realized as a very wide counter that is running with the currently used sampling rate. The counter is reset either 
by explicit software command or depending on the mode by the start of the card. On receiving the trigger event the current counter value is 
stored in an extra FIFO memory.

This function is designed as an enhancement to the Multiple Recording mode and is also used together with the Gated Sampling and ABA 
mode, but can also be used with plain single acquisitions.

Each recorded timestamp consists of the number of samples that has been counted since the last 
counter reset has been done. The actual time in relation to the reset command can be easily calcu-
lated by the formula on the right. Please note that the timestamp recalculation depends on the cur-
rently used sampling rate. Please have a look at the clock chapter to see how to read out the 
sampling rate.

If you want to know the time between two timestamps, you can simply calculate this by the for-
mula on the right.

The following registers can be used for the timestamp function:

Writing of SPC_TS_RESET and SPC_TS_RESET_WAITREFCLK to the command register can only have an effect on 
the counters, if the cards clock generation is already active and the timestamp mode has been written to the 
hardware. This is the case when the card either has already done an acquisition with enabled timestamps 
after the last reset or if the clock setup and timestamp mode has already been actively transferred to the card by 
issuing the M2CMD_CARD_WRITESETUP command.

Table 100: Spectrum API: timestamp related register and available timestamp commands

Register Value Direction Description

SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are 
placed in bit 8 to 15, seconds are placed in bit 0 to 7. Returned value is expressed as a UTC time.

SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month 
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7

SPC_TIMESTAMP_TIMEOUT 47045 read/write Set’s a timeout in milli seconds for waiting of an reference clock edge. Writing a zero disables the 
timeout. Default value is zero.

SPC_TIMESTAMP_AVAILMODES 47001 read Returns all available modes as a bitmap. Modes are listed below

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TS_RESET 1h The counters are reset and the local PC time is stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIME-
STAMP_STARTDATE registers. Only usable with mode TSMODE_STANDARD

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command SPC_TS_RESET or SPC_TS_RESET_WAITREFCLOCK.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TS_RESET_WAITREFCLK 8h Similar as SPC_TS_RESET, but aimed at  SPC_TSCNT_REFCLOCKxxx modes: The counters are reset then the driver 
waits for the reference edge as long as defined by the timestamp timeout time. After detecting the edge, the local PC 
time is stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIMESTAMP_STARTDATE registers. Only usable 
with mode TSMODE_STANDARD

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

SPC_TSCNT_REFCLOCKPOS 200h Counter is split, upper part is running with external reference clock positive edge, lower part is running with sampling 
clock

SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock

SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the multi-purpose inputs with every stored timestamp in the upper 64 
bit. See Multi-purpose I/O chapter for details on these inputs.

SPC_TSFEAT_NONE 0 No additional timestamp is created. The total number of stamps is only trigger related.

SPC_TSFEAT_STORE1STABA 10000h Enables the creation of one additional timestamp for the first A area sample when using the optional ABA (dual-time-
base) mode.

SPC_TSFEAT_TRGSRC 80000h Reding this flag from the SPC_TIMESTAMP_AVAILMODES indicates that the card is capable of encoding the trigger 
source into the timestamp.
Writing this flag to the SPC_TIMESTAMP_CMD register enables the storage of the trigger source in the upper 64 bit of 
the timestamp value.

t Timestamp
Sampling rate
----------------------------------------------------------=

t
Timestampn 1+ Timestampn–

Sampling rate
-----------------------------------------------------------------------------------------------------------------------------=



Timestamps Timestamp modes

(c) Spectrum Instrumentation GmbH 128

Example for setting timestamp mode:
The timestamp mode must consist of one of the mode constants, one of the counter and one of the feature constants:

Timestamp modes

Standard mode
In standard mode the timestamp counter is set to zero once by writing the TS_RESET command to the command register. After that command 
the counter counts continuously independent of start and stop of acquisition. The timestamps of all recorded trigger events are referenced to 
this common zero time. With this mode you can calculate the exact time difference between different recordings and also within one acqui-
sition (if using for example Multiple Recording).

The following table shows the valid values that can be written to the timestamp command register for this mode:

Please keep in mind that this mode only work sufficiently as long as you don’t change the sampling rate 
between two acquisitions that you want to compare.

StartReset mode
In StartReset mode the timestamp counter is set to zero on every start of the card. After starting the card the counter counts continuously. The 
timestamps of one recording are referenced to the start of the recording. This mode is very useful for Multiple Recording and Gated Sampling 
(see according chapters for detailed information on these two optional modes).

// setting timestamp mode to standard using internal clocking
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL | SPC_TSFEAT_NONE);

// setting timestamp mode to start reset mode using internal clocking
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STARTRESET | SPC_TSCNT_INTERNAL | SPC_TSFEAT_NONE);

// setting timestamp mode to standard using external reference clock with positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_REFCLOCKPOS | SPC_TSFEAT_NONE);

Table 101: Spectrum API: timestamp commands for standard mode

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TS_RESET 1h The timestamp counter is set to zero

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Image 64: drawing of timestamp acquisition in standard mode in relation to card start and trigger detection

Image 65: drawing of timestamp acquisition in start-reset mode in relation to card start and trigger detection



Timestamps Timestamp modes

(c) Spectrum Instrumentation GmbH 129

The following table shows the valid values that can be written to the timestamp command register.

Refclock mode
In addition to the counter counting the samples a second separate counter is utilized. An additional external signal is used, which affects both 
counters and needs to be fed in externally. This external reference clock signal will reset the sample counter and also increase the second 
counter. The second counter holds the number of the clock edges that have occurred on the external reference clock signal and the sample 
counter holds the position within the current reference clock period with the resolution of the sampling rate.

This mode can be used to obtain an absolute time reference when using an external radio clock or a GPS receiver. In that case the higher 
part is counting the seconds since the last reset and the lower part is counting the position inside the second using the current sampling rate.

Please keep in mind that as this mode uses an additional external signal and can therefore only be used 
when connecting an reference clock signal on the related connector on the card:

•  X0 on M4i/M4x/M5i and related digitizerNETBOX products
•  X1 on M2p and related digitizerNETBOX products

The counting is initialized with the timestamp reset command. Both counters will then be set to zero.

The following table shows the valid values that can be written to the timestamp command register for this mode:

To synchronize the external reference clock signal with the PC clock it is possible to perform a timestamp reset command which waits a
specified time for the occurrence of the external clock edge. As soon as the clock edge is found the function stores the current PC time and 
date which can be used to get the absolute time. As the timestamp reference clock can also be used with other clocks that don’t need to be 
synchronized with the PC clock the waiting time can be programmed using the SPC_TIMESTAMP_TIMEOUT register.

Table 102: Spectrum API: timestamp commands for star-reset mode

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Table 103: Spectrum API: timestamp commands for refclock mode

Register Value Direction Description

SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are 
placed in bit 8 to 15, seconds are placed in bit 0 to 7

SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month 
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7

SPC_TIMESTAMP_TIMEOUT 47045 read/write Sets a timeout in milli seconds for waiting for a reference clock edge

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSMODE_DISABLE 0 Timestamp is disabled.

SPC_TS_RESET 1h The counters are reset and the local PC time is stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIME-
STAMP_STARTDATE registers.

SPC_TS_RESET_WAITREFCLK 8h Similar as SPC_TS_RESET, but aimed at  SPC_TSCNT_REFCLOCKxxx modes: The counters are reset then the driver 
waits for the reference edge as long as defined by the timeout time. After detecting the edge, the local PC time is 
stored for read out by SPC_TIMESTAMP_STARTTIME and SPC_TIMESTAMP_STARTDATE registers.

SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.

SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.

SPC_TSCNT_REFCLOCKPOS 200h Counter is split, upper part is running with external reference clock positive edge, lower part is running with sampling 
clock

SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock

Image 66: drawing of timestamp acquisition in refclock mode in relation to card start and trigger detection



Timestamps Reading out the timestamps

(c) Spectrum Instrumentation GmbH 130

Example for initialization of timestamp reference clock and synchronization of a seconds signal with the PC clock:

Reading out the timestamps

General
The timestamps are stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out timestamps using DMA 
transfer similar to the DMA transfer of the main sample data DMA transfer. The card has three completely independent busmaster DMA en-
gines in hardware allowing the simultaneous transfer of both timestamp and sample data.

 As seen in the picture there are separate FIFOs holding ABA (if available) and timestamp data.

Although an M4i is shown here, this applies to M4x, M2p and M5i cards as well. Each FIFO has its own DMA channel, the way data is 
handled by the DMA engine is similar for both kinds of extra FIFOs and is also very similar to the main sample data transfer engine. Therefore 
additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for extra transfer buffers.
As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer. 
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_REFCLOCKPOS);
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_TIMEOUT, 1500);
if (ERR_TIMESTAMP_SYNC == spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TS_RESET_WAITREFCLK))
    printf ("Synchronization with external clock signal failed\n");

// now we read out the stored synchronization clock and date
int32 lSyncDate, lSyncTime;
spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_STARTDATE, &lSyncDate);
spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_STARTTIME, &lSyncTime); // expressed as UTC time

// and print the start date and time information (European format: day.month.year hour:minutes:seconds)
printf ("Start date: %02d.%02d.%04d\n", lSyncDate & 0xff, (lSyncDate >> 8) & 0xff, (lSyncDate >> 16) & 0xffff);
printf ("Start time: %02d:%02d:%02d\n", (lSyncTime >> 16) & 0xff, (lSyncTime >> 8) & 0xff, lSyncTime & 0xff);

Table 104: Spectrum API: extra DMA commands (ABA and Timestamp)

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.

M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This 
wait function also takes the timeout parameter into account.

M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.

M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large 
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this 
mode. It is not possible to mix DMA and polling mode.

Image 67: Overview of acquisition data, ABA data and timestamp data DMA transfer



Timestamps Reading out the timestamps

(c) Spectrum Instrumentation GmbH 131

The extra FIFO data transfer can generate one of the following status information:.

Data Transfer using DMA
Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer 
shares the command and status register with the card control, data transfer commands and status information. 

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how 
the polling mode works.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all its details. The definition of the buffer is done with the 
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have 
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

M5i cards only:
On M5i cards the lLenOfBufferInBytes parameter needs to be an integer multiple of 64 bytes.

Buffer handling
A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer 
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled 
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set’s parts of this 
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the SPC_XXX_AVAIL_-
CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL_USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get 
notice of it if the notify size is programmed to a higher value.

Remarks
• The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller 

located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.
• As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is 

done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time 
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one 
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available 

Table 105: Spectrum APUI: extra DMA status (ABA and Timestamp)

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can 
be more data.

M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 0, pvBuffer, 0, lLenOfBufferInBytes);

Table 106: Spectrum API: ABA and Timestamp DMA buffer handling registers

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred 
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start 
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is 
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this 
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred 
timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or 
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation

SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this 
amount of bytes is again free for new data to be transferred.



Timestamps Reading out the timestamps

(c) Spectrum Instrumentation GmbH 132

bytes still stick to the defined notify size!
• If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

Buffer handling example for DMA timestamp transfer (ABA transfer is similar, just using other registers)

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by 
the hardware using busmaster DMA this is not critical as long as the application data buffers are large 
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling
If the extra data is quite slow and the delay caused by the notify size on DMA transfers is unacceptable for your application it is possible to 
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun 
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
This is similar to the above explained DMA buffer transfer. The value „notify size“ is ignored and should be set to 4k (4096).

Buffer handling
The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or SPC_ABA_AVAIL_US-
ER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that has been read. In min-
imum this will be one DWORD = 4 bytes. 

int8* pcData = (int8*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, lBufSizeInBytes);

do
    {
    // we wait for the next data to be available. After this call we get at least 4k of data to proceed
    dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA | M2CMD_EXTRA_WAITDMA);
    
    if (!dwError)
        {

        // if there was no error we can proceed and read out the current amount of available data
        spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailBytes);
        spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_POS, &lBytePos);

        printf (“We now have %d new bytes available\n”, lAvailBytes);
        printf (“The available data starts at position %d\n”, lBytesPos);

        // we take care not to go across the end of the buffer
        if ((lBytePos + lAvailBytes) >= lBufSizeInBytes)
            lAvailBytes = lBufSizeInBytes - lBytePos;

        // our do function gets a pointer to the start of the available data section and the length
        vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

        // the buffer section is now immediately set available for the card
        spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lAvailBytes);
        }
    }
while (!dwError); // we loop forever if no error occurs



Timestamps Reading out the timestamps

(c) Spectrum Instrumentation GmbH 133

Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

  

Data format
Each timestamp is 128 bit long and internally mapped to two consecutive 64 bit (8 bytes) values. The lower 64 bit (counter value) contains 
the number of clocks that have been recorded with the currently used sampling rate since the last counter-reset has been done. The matching 
time can easily be calculated as described in the general information section at the beginning of this chapter.

The values the counter is counting and that are stored in the timestamp FIFO represent the moments the trigger event occurs internally. Com-
pared to the real external trigger event, these values are delayed. This delay is fix and therefore can be ignored, as it will be identical for all 
recordings with the same setup.

Standard data format
When internally mapping the timestamp from 128 bit to two 64 bit values, the unused upper 64 bits are filled up with zeros.

Extended timestamp data format
Sometimes it is useful to store the level of additional external static signals together with a recording, such as e.g. control inputs of an external 
input multiplexer or settings of an external. When programming a special flag the upper 64 bit of every 128 bit timestamp value is not (as 

int8* pcData = (int8*) pvAllocMemPageAligned (lBufSizeInBytes);

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, lBufSizeInBytes);

// we start the polling mode    
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL);

// this is our polling loop
 do
    {
    spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lAvailBytes);
    spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_POS, &lBytePos);

    if (lAvailBytes > 0)
        {
        printf (“We now have %d new bytes available\n”, lAvailBytes);
        printf (“The available data starts at position %d\n”, lBytesPos);

        // we take care not to go across the end of the buffer
        if ((lBytePos + lAvailBytes) >= lBufSizeInBytes)
            lAvailBytes = lBufSizeInBytes - lBytePos;

        // our do function get’s a pointer to the start of the available data section and the length
        vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

        // the buffer section is now immediately set available for the card
        spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lAvailBytes);
        }
    }
while (!dwError); // we loop forever if no error occurs

DMA mode Polling mode
Define the buffer spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR...); spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR...);
Start the transfer spcm_dwSetParam_i32 (hDrv, SPC_M2CMD,  M2CMD_EXTRA_STARTDMA) spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
Wait for data spcm_dwSetParam_i32 (hDrv, SPC_M2CMD,  M2CMD_EXTRA_WAITDMA) not in polling mode
Available bytes? spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
Min available bytes programmed notify size 4 bytes
Current position? spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes); spcm_dwGetParam_i32 (hDrv, SPC_TS_AVAIL_USER_LEN, &lBytes);
Free buffer for card spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lBytes); spcm_dwSetParam_i32 (hDrv, SPC_TS_AVAIL_CARD_LEN, lBytes);

Table 107: timestamp data format depending on the selected timestamp acquisition mode

Timestamp Mode 16th  
byte

... 11th  
byte

10th  
byte

9th 
byte

8th byte 7th byte 6th byte 5th 
byte

4th 
byte

3rd 
byte

2nd  
byte

1st 
byte

Standard/StartReset 0h 64 bit wide Timestamp

Refclock mode 0h 24 bit wide Refclock edge counter (seconds counter) 40 bit wide Timestamp



Timestamps Reading out the timestamps

(c) Spectrum Instrumentation GmbH 134

in standard data mode) filled up with leading zeros, but with the values of the digital inputs ( X3, X2, X1, X0). The following table shows the 
resulting 128 bit timestamps.

The above mentioned „Extra Data Word“ contains the following 48bit wide data, depending on the selected timestamp data format:

The trigger sources are encoded as follows:

Selecting the timestamp data format

The selection between the different data format for the timestamps is done with a flag that is written to the timestamp command register. As 
this register is organized as a bitfield, the data format selection is available for all possible timestamp modes and different data modes can 
be combined.

 

Table 108: extended timestamp data format depending on the selected timestamp acquisition mode

Timestamp Mode 16th  
byte

... 15h  
byte

14th  
byte

... 9th 
byte

8th byte 7th byte 6th byte 5th 
byte

4th 
byte

3rd 
byte

2nd  
byte

1st 
byte

Standard/StartReset 0h Extra Data Word 64 bit wide Timestamp

Refclock mode 0h Extra Data Word 24 bit wide Refclock edge counter (seconds counter) 40 bit wide Timestamp

Table 109: timestamp extended data word format depending on the selected acquisition features

Timestamp Data Format Bit
47

... Bit
32

Bit
31

... Bit
28

Bit
27

... Bit
16

Bit
15

... Bit
13

Bit
12

Bit
11

Bit
10

... Bit
0

no special data format is set 0h

SPC_TSXIOACQ_ENABLE 0h 0h X3 .. X0 0h

SPC_TSFEAT_TRGSRC 0h Trigger source bitmask 
(X3, X2, X1, X0)
(see table below)

0h Trigger source bit-
mask (Ch0 .. Force)
(see table below)

SPC_TSXIOACQ_ENABLE | SPC_TS-
FEAT_TRGSRC

0h Trigger source bitmask 
(X3, X2, X1, X0)
(see table below)

0h X3 .. X0 0h Trigger source bit-
mask (Ch0 .. Force)
(see table below)

SPC_TRGSRC_MASK_CH0 1h Set when a trigger event occurring on channel 0 was leading to final trigger event.

SPC_TRGSRC_MASK_CH1 2h Set when a trigger event occurring on channel 1 was leading to final trigger event.

SPC_TRGSRC_MASK_CH2 4h Set when a trigger event occurring on channel 2 was leading to final trigger event.

SPC_TRGSRC_MASK_CH3 8h Set when a trigger event occurring on channel 3 was leading to final trigger event.

SPC_TRGSRC_MASK_EXT0 100h Set when a trigger event occurring on external trigger(Ext0) was leading to final trigger event.

SPC_TRGSRC_MASK_FORCE 400h Set when a trigger event occurring by using the force trigger command is leading to final trigger event.

SPC_TRGSRC_MASK_X0 10000000h Set when a trigger event occurring on TTL trigger(X1) is leading to final trigger event.

SPC_TRGSRC_MASK_X1 20000000h Set when a trigger event occurring on TTL trigger(X1) is leading to final trigger event.

SPC_TRGSRC_MASK_X2 40000000h Set when a trigger event occurring on TTL trigger(X2) is leading to final trigger event.

SPC_TRGSRC_MASK_X3 80000000h Set when a trigger event occurring on TTL trigger(X3) is leading to final trigger event.

Table 110: Spectrum API: timestamp command register and settings for different timestamp data formats

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below

SPC_TSXIOACQ_ENABLE 1000h Enables the trigger synchronous acquisition of the X1...X19 inputs with every stored timestamp in the upper 64 bit.

SPC_TSFEAT_TRGSRC 80000h Enables the storage of the trigger source in the upper 64 bit of the timestamp value.



Timestamps Combination of Memory Segmentation Options with Timestamps

(c) Spectrum Instrumentation GmbH 135

Combination of Memory Segmentation Options with Timestamps
This topic should give you a brief overview how the timestamp option interacts with the options Multiple Recording for which the timestamps 
option has been made.

Multiple Recording and Timestamps
Multiple Recording is well matching with the timestamp option. If timestamp 
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right. 

Please keep in mind that the trigger events are timestamped, not the begin-
ning of the acquisition. The first sample that is available is at the time position 
of [Timestamp - Pretrigger]. 

The programming details of the timestamp option is explained in an extra 
chapter.

 The following example shows the setup of the Multiple Recording mode together with activated timestamps recording and a short display of 
the acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

    

// setup of the Multiple Recording mode
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI); // Enable Standard Multiple Recording
spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE,   1024);         // Segment size is 1 kSamples, Posttrigger is 768
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER,    768);         // samples and pretrigger therefore 256 samples.
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE,       4096);         // 4 kSamples in total acquired -> 4 segments

// setup the Timestamp mode and make a reset of the timestamp counter
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL);
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_RESET);

// now we define a buffer for timestamp data and start the acquistion. Each timestamp is 128 bit = 16 bytes.
int64* pllStamps = (int64*) pvAllocMemPageAligned (16 * 4);
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 0, (void*) pllStamps, 0, 4 * 16);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_EXTRA_STARTDMA);

// we wait for the end timestamps transfer which will be received if all segments have been recorded
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA);

// as we now have the timestamps we just print them and calculate the time in milli seconds
// for simplicity only the lower 64 bit part of the 128 bit stamp is used, hence only every
// second array element of pllStamps is used here.
int64 llSamplerate;
double dTime_ms;
spcm_dwGetParam_i64 (hDrv, SPC_SAMPLERATE, &llSamplerate);

for (int i = 0; i < 4; i++)
    {
    dTime_ms = 1000.0 * pllStamps[2 * i] / llSamplerate);
    
    printf ("#%d: %I64d samples = %.3f ms\n", i, pllStamps[2 * i], dTime_ms);
    }

Image 68: drawing of Multiple Recording Acquisition with Timestamps



Pulse Generator (Firmware Option) General Information

(c) Spectrum Instrumentation GmbH 136

Pulse Generator (Firmware Option)

General Information
The pulse generator module provides a versatile timing synchroniza-
tion interface between the acquisition/replay functionality of the card 
and external equipment.

The module consists of four pulse generators, where each generator 
allows for (in)dependent generation of individual pulses, pulse trains 
or a continuous stream of pulses that can be output on a Multi-Pur-
pose I/O Line, greatly enhancing the versatility of the XIO lines.

The versatile trigger capabilities allow for external or internal trigger-
ing. Moreover, the pulse generators can trigger each other, hence al-
lowing for cascading of up to four pulse repetition time scales.

The outputs of the pulse generators are intrinsically synchronized to 
the card acquisition/replay functionality and its sampling clock, 
hence allowing for reproducible enabling or switching of external 
signals (e.g., for signal actuating). Other use cases might be pulse 
broadening, pulse delaying, or just pulse generation.

The generation of the pulse trains and timing signals is performed inside the FPGA of the card and is working in parallel to any other func-
tionality of the card (such as data acquisition or replay), and hence not reducing the performance.

Feature Overview
• Four pulse generators are available
• Single-shot, multiple repetitions or continuous/infinite repetition of pulses
• Individual control of pulse length/duty cycle
• External or internal triggering/starting individually for each pulse generator
• Individual trigger delay per pulse generator allowing for phase shifting
• Internal cascading of pulse generators possible allowing up to four repetition time scales.

The “standard” modes of the multi purpose I/O lines are still available, as described in the “Multi Purpose I/O Lines” section. This chapter 
focuses on the additional functionality, available with the pulse generator firmware option installed.

The multi purpose I/O lines are available on the front plate and labelled with X0 (line 0), X1 (line 1), X2 (line 2) and X3 (line 3). As default 
these lines are switched off.

As default (power-on and after reset command) the I/O capable lines are switched off and hence are not 
actively driven. Hence the on-board 10k Ohm pull-up resistors are pulling these lines to logic HIGH. If a logic 
LOW is required, external lower-value (1k Ohm) pull-down resistors might be used.

Please be careful when programming these lines as an output whilst maybe still being connected with an 
external signal source, as that may damage components either on the external equipment or on the card 
itself.

Image 69: overview block diagram of multi-purpose I/O lines and pulse generators



Pulse Generator (Firmware Option) Principle of Operation

(c) Spectrum Instrumentation GmbH 137

Principle of Operation

All of the four available pulse generator units are identical in their feature set and individually programmable.

As shown above, each unit consists of:

• A dedicated trigger setup consisting of two multiplexers MUX1 and MUX2 combining various signals
• A programmable inverter on the output of each multiplexer
• A static logic AND gate combining the outputs of both multiplexers to form a trigger/gate for the pulse generating unit
• The pulse generating unit itself with its trigger signal driven by the AND gate
• A final programmable output inverter

The pulse generator unit is clocked with an FPGA internal clock, which is a divided version derived from the acquisition or generation sam-
pling rate. Since the division ratio is depending on the used card type, the number of active channels and the sampling rate, an dedicated 
read only register allows to read out the frequency value by the following register:

The following short excerpt shows which parameters need to be defined first and how to read out the clock rate at which the pulse generator 
units then are clocked:

See the end of this chapter for a more complete example setup of a pulse generator unit.

Changing the card settings while pulse generators are active will cause a stop and restart of the pulse gen-
erators automatically issued by the driver to the pulse generators.

Table 111: Spectrum API: pulse generator clock frequency read register

Register Value Direction Description

SPC_XIO_PULSEGEN_CLOCK 602000 read Returns the clock driving the pulse generator in Hz.

...
// first set up the parameters, that influence the pulse generator’s clock rate
spcm_dwSetParam_i32 (hCard, SPC_CHENABLE, CHANNEL0);  // channel enable
spcm_dwSetParam_i64 (hCard, SPC_SAMPLERATE, MEGA(1)); // desired acquisition/generation sampling rate
...
// afterwards read out the divided clock rate, clocking the pulse generator units
int64 llPulseGenClock_Hz = 0;
spcm_dwGetParam_i64 (hCard, SPC_XIO_PULSEGEN_CLOCK, &llPulseGenClock_Hz);

Image 70: overview block diagram of the pulse generator



Pulse Generator (Firmware Option) Setting up the Pulse Generator

(c) Spectrum Instrumentation GmbH 138

Setting up the Pulse Generator

Enabling, disabling and resetting a pulse generator
Each pulse generator unit can be enabled and disabled separately:

Disabling a unit will act as a reset dedicated to this single unit. A disabled pulse generator will output a logic LOW prior to the programmable 
output inverter, hence with an active output inverter the final output of a disabled pulse generator will be logically HIGH.

Defining the basic pulse parameters
The two basic properties for generating a (repetitive) pulsed output is to define the length (or period) and define how much of the waveform 
should the output be HIGH:

The pulse generator will upon start (trigger) first set the output HIGH for the programmed amount of time. Afterwards it will set the waveform 
LOW for the remaining time until the programmed length (period) has been reached. As a result, the number of clock cycles during which 
the output is LOW calculates to: LOW = LEN - HIGH. In the example above with LEN = 7 and HIGH = 4, the signal will be LOW for the 
remaining 3 clock cycles.

The following table shows the registers required to set the total length of the pulse to be generated. The length is defined in clock cycles:

The second parameter that needs to be defined is the amount of clock pulses that force the output to a logic HIGH. The following table shows 
the registers required to set the total length of the pulse to be generated:

These two settings alone allow for the creation of periodic signals with the freely programmable duty cycle. Setting the HIGH time to half the 
LEN will result is a clock-like signal with half the time being HIGH and half the time being LOW, hence having a 50% duty-cycle signal.

Since the output of the pulse generator can only change with every edge of its clock input, the speed of this clock ultimately defines the gran-
ularity at which the pulses can be configured. The lower the period of the generated pulse signal the finer this granularity becomes with 
regards to the output signal frequency. 

For example, when creating an output with the maximum output frequency of Clk/2 (with LEN = 2 and HIGH = 1), the only possible remaining 
configuration is a duty-cycle of 50%. And with a output at frequency with Clk/3 (with LEN=3 and HIGH either 1 or 2) the duty-cycle is either 
33% or 66%, but cannot be 50%.

Table 112: Spectrum API: pulse generator enable registers

Register Value Direction Description

SPC_XIO_PULSEGEN_ENABLE 601500 read/write Bitmask to enable any combination of the four different pulse generators.

SPCM_PULSEGEN_ENABLE0 1h Enable pulse generator 0. When disabled, the output (prior to the output inverter) is set to logic LOW.

SPCM_PULSEGEN_ENABLE1 2h Enable pulse generator 1. When disabled, the output (prior to the output inverter) is set to logic LOW.

SPCM_PULSEGEN_ENABLE2 4h Enable pulse generator 2. When disabled, the output (prior to the output inverter) is set to logic LOW.

SPCM_PULSEGEN_ENABLE3 8h Enable pulse generator 3. When disabled, the output (prior to the output inverter) is set to logic LOW.

Table 113: Spectrum API: pulse generator length/period register

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILLEN_MIN 602001 read Returns the minimum length (period) of the pulse generator’s output pulses in clock cycles.

SPC_XIO_PULSEGEN_AVAILLEN_MAX 602002 read Returns the maximum length (period) of the pulse generator’s output pulses in clock cycles.

SPC_XIO_PULSEGEN_AVAILLEN_STEP 602003 read Returns the step size the pulse generator’s output pulses in clock cycles.

SPC_XIO_PULSEGEN0_LEN 601001 read/write Define the length of the pulse period generated by pulse generator 0 in clock cycles.

SPC_XIO_PULSEGEN1_LEN 601101 read/write Define the length of the pulse period generated by pulse generator 1 in clock cycles.

SPC_XIO_PULSEGEN2_LEN 601201 read/write Define the length of the pulse period generated by pulse generator 2 in clock cycles.

SPC_XIO_PULSEGEN3_LEN 601301 read/write Define the length of the pulse period generated by pulse generator 3 in clock cycles.

Table 114: Spectrum API: pulse generator HIGH time registers

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILHIGH_MIN 602004 read Returns the minimum HIGH time of the pulse generator’s output pulses in clock cycles.

SPC_XIO_PULSEGEN_AVAILHIGH_MAX 602005 read Returns the maximum HIGH time of the pulse generator’s output pulses in clock cycles.

SPC_XIO_PULSEGEN_AVAILHIGH_STEP 602006 read Returns the step size the pulse generator’s HIGH time in clock cycles.

SPC_XIO_PULSEGEN0_HIGH 601002 read/write Define the HIGH time for the pulse generated by pulse generator 0 in clock cycles.

SPC_XIO_PULSEGEN1_HIGH 601102 read/write Define the HIGH time for the pulse generated by pulse generator 1 in clock cycles.

SPC_XIO_PULSEGEN2_HIGH 601202 read/write Define the HIGH time for the pulse generated by pulse generator 2 in clock cycles.

SPC_XIO_PULSEGEN3_HIGH 601302 read/write Define the HIGH time for the pulse generated by pulse generator 3 in clock cycles.

Image 71: timing diagram illustrating the basic pulse parameters



Pulse Generator (Firmware Option) Setting up the Pulse Generator

(c) Spectrum Instrumentation GmbH 139

In addition to defining the length/period of a single pulse, one can also define how often a pulse should be replayed repeatedly. The choice 
can be made between repeating the pulses infinitely (until being explicitly stopped) or to pre-define a number of repetitions:

Delaying (phase shifting) the Outputs
As mentioned above the pulse generator will always start with the first portion of the period to be HIGH and then will set the output LOW for 
the remaining number of cycles within the chosen length.

When using the delay, it is possible to delay the initial HIGH portion of the pulse generator(s) by a defined amount of clock cycles. This in 
combination with a common starting point (start/trigger) allows for the generation of phase shifted signals as shown below for two of the 
pulse generators. Both are set up with identical LEN and HIGH parameters, but the additional delay for pulse generator 0 (PGen0) is kept at 
the default of zero clock cycles, whilst PGen1is delayed by 5 clock cycles:

The amount of additional delay can be set individually for each pulse generator, by using the following registers: 

Defining the trigger behavior
Each pulse generator can be set up to react on its trigger input in three different ways, depending on the application’s need:

For simplicity, the waveforms below will show the modes principle, without any additionally programmed delay, and also omitting the intrinsic 
pipeline delay from the trigger event to the output’s reaction.

Table 115: Spectrum API: pulse generator loops/pulse repetition registers 

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILLOOPS_MIN 602010 read Returns the minimum number of times, the output of a pulse generator can be repeated.

SPC_XIO_PULSEGEN_AVAILLOOPS_MAX 602011 read Returns the maximum number of times, the output of a pulse generator can be repeated.

SPC_XIO_PULSEGEN_AVAILLOOPS_STEP 602012 read Returns the step size when defining the repetition of pulse generator’s output.

SPC_XIO_PULSEGEN0_LOOPS 601004 read/write Define the number of repetitions of the output period when triggered for pulse generator 0.

SPC_XIO_PULSEGEN1_LOOPS 601104 read/write Define the number of repetitions of the output period when triggered for pulse generator 1.

SPC_XIO_PULSEGEN2_LOOPS 601204 read/write Define the number of repetitions of the output period when triggered for pulse generator 2.

SPC_XIO_PULSEGEN3_LOOPS 601304 read/write Define the number of repetitions of the output period when triggered for pulse generator 3.

0 Upon a trigger event the output of the pulse generator will run infinitely until being disabled or reset. 

1 ... [4G - 2] Upon a trigger event the output period will replayed the defined number of times.

Table 116: Spectrum API: pulse generator delay/phase shift registers

Register Value Direction Description

SPC_XIO_PULSEGEN_AVAILDELAY_MIN 602007 read Returns the minimum delay of the pulse generator’s output in clock cycles.

SPC_XIO_PULSEGEN_AVAILDELAY_MAX 602008 read Returns the maximum delay of the pulse generator’s output in clock cycles.

SPC_XIO_PULSEGEN_AVAILDELAY_STEP 602009 read Returns the step size of the pulse generator’s output delay in clock cycles.

SPC_XIO_PULSEGEN0_DELAY 601003 read/write Define how much the output of pulse generator 0 is delayed after trigger in clock cycles.

SPC_XIO_PULSEGEN1_DELAY 601103 read/write Define how much the output of pulse generator 1 is delayed after trigger in clock cycles.

SPC_XIO_PULSEGEN2_DELAY 601203 read/write Define how much the output of pulse generator 2 is delayed after trigger in clock cycles.

SPC_XIO_PULSEGEN3_DELAY 601303 read/write Define how much the output of pulse generator 3 is delayed after trigger in clock cycles.

Table 117: Spectrum API: pulse generator mode registers with their available settings

Register Value Direction Description

SPC_XIO_PULSEGEN0_MODE 601000 read/write Defines the behavior of pulse generator 0 on how to react on its trigger event.

SPC_XIO_PULSEGEN1_MODE 601100 read/write Defines the behavior of pulse generator 1 on how to react on its trigger event.

SPC_XIO_PULSEGEN2_MODE 601200 read/write Defines the behavior of pulse generator 2 on how to react on its trigger event.

SPC_XIO_PULSEGEN3_MODE 601300 read/write Defines the behavior of pulse generator 3 on how to react on its trigger event.

SPCM_PULSEGEN_MODE_GATED 1 Pulse generator will start if the trigger condition or “gate” is met and will stop, if either the gate becomes inactive or 
the defined number of LOOPS have been generated. Will reset its loop counter, when the gate becomes LOW.

SPCM_PULSEGEN_MODE_TRIGGERED 2 The pulse generator will start if the trigger condition is met and will replay the defined number of loops before re-arm-
ing itself and waiting for another trigger event. Changes in the trigger signal while replaying will be ignored.

SPCM_PULSEGEN_MODE_SINGLESHOT 3 The pulse generator will start if the trigger condition is met and will replay the defined number of loops once.

Image 72: timing diagram illustrating delaying a pulse generator output



Pulse Generator (Firmware Option) Setting up the Pulse Generator

(c) Spectrum Instrumentation GmbH 140

Continuously triggered output
After enabling the pulse generator, it will detect trigger events. Upon each trigger, the programmed number of pulses are generated, as 
defined by the LEN, HIGH, DELAY and LOOPS parameters explained above. After finishing the programmed number of triggers, it will au-
tomatically arm itself again and wait for the next trigger.

In contrast to the Gated mode (see below), once a trigger has been detected the trigger input is ignored and the pulse train will finish inde-
pendent from any activity on the trigger input. Only when is has finished the current generation, a new trigger will be detected:

Single Shot triggering
This mode is similar to the triggered mode, but after enabling the pulse generator it will only detect one single trigger. Upon that trigger, the 
programmed number of pulses are generated, as defined by the LEN, HIGH, DELAY and LOOPS parameters explained above:

Afterwards the pulse generator will not detect any further triggers, until being reset by re-enabling:

Continuously gated Output
After enabling the pulse generator, it will detect trigger events. Upon each trigger, the programmed number of pulses are generated, as 
defined by the LEN, HIGH, DELAY and LOOPS parameters explained above and as long as the trigger condition or gate is still valid (HIGH). 
If the gate ends, this will stop the output and reset all internal counters back to start. So, each time the gate turns HIGH, the sequence (number 
of pulses as defined by the LEN, HIGH, DELAY and LOOPS) starts again from its beginning: 

Configuring the pulse generator’s trigger source
The various possible signals that can logically be combined to form a trigger event for a pulse generator are split up into two portions each 
consisting of a multiplexer (MUX).

Multiplexer 1
The first multiplexer, MUX1, selects between two different sources and also allows to be completely unused by utilizing a logical ‘1’ or HIGH 
level, being transparent to the following AND condition combining the two multiplexers:

By having the two status lines ARM and RUN available as input, it is either possible to generate pulses depending only on the card’s RUN 
or ARM state (e.g., currently running or currently not running enabling the inverter of MUX1 output) or to mask other trigger conditions from 
MUX2 to only be passed upon the card’s acquisition/replay RUN or ARM state.

Table 118: Spectrum API: pulse generator trigger MUX1 registers with their available settings

Register Value Direction Description

SPC_XIO_PULSEGEN0_MUX1_SRC 601005 read/write Selects the input source for MUX1 for pulse generator 0. 

SPC_XIO_PULSEGEN1_MUX1_SRC 601105 read/write Selects the input source for MUX1 for pulse generator 1. 

SPC_XIO_PULSEGEN2_MUX1_SRC 601205 read/write Selects the input source for MUX1 for pulse generator 2. 

SPC_XIO_PULSEGEN3_MUX1_SRC 601305 read/write Selects the input source for MUX1 for pulse generator 3. 

SPCM_PULSEGEN_MUX1_SRC_UNUSED 0 Inputs of MUX1 are not used in creating the trigger condition and instead a static logic HIGH is used for MUX1.

SPCM_PULSEGEN_MUX1_SRC_RUN 1 This input of MUX1 reflects the current run state of the card. If acquisition/output is running the signal is HIGH. If 
card has stopped the signal is LOW.
The signal is identical to XIO output using SPCM_XMODE_RUNSTATE.

SPCM_PULSEGEN_MUX1_SRC_ARM 2 This input of MUX1 reflects the current ARM state of the card. If the card is armed and ready to receive a trigger 
the signal is HIGH. If the card isn’t running or the card is still acquiring pretrigger data or the trigger has already 
been detected. the signal is LOW.
The signal is identical to XIO output using SPCM_XMODE_ARMSTATE.

Image 73: timing diagram illustrating the pulse generator triggered output mode

Image 74: timing diagram illustrating the pulse generator single-shot triggered output mode

Image 75: timing diagram illustrating the pulse generator gated output mode



Pulse Generator (Firmware Option) Setting up the Pulse Generator

(c) Spectrum Instrumentation GmbH 141

Multiplexer 2
The second multiplexer can be transparent and hence unused or allows to select various sources for starting the pulse creation:

• Allowing a start command issued by the application software by issuing a force trigger command
• Any one of the other pulse generator unit outputs to create pulses or pulse trains with up to four repetition time scales
• The card’s acquisition or replay trigger output 
• An external logic signal coming in from any of the multi-purpose XIO input capable lines

The output of the following command register is connected to all pulse generator units in parallel in a synchronous fashion:

This allows to start any number of pulse generators set to MUX2_SRC_SOFTWARE to be started at the same instant even from software, useful 
when requiring pulses with a known and static phase relation.

Additional trigger configuration (changing the active edge or level)

Please note that the Trigger/Gate input to the “Pulse Generation” portion is always HIGH-active. Depending 
on the selected pulse generator configuration it is triggering on the rising edge or the logic HIGH state. The 
two programmable inverters at the multiplexer outputs can be used to trigger on the falling edge or a logical 

LOW instead.

To access the three programmable inverters and to optionally change whether triggering on a rising edge (the trigger signal changing its 
state from LOW to HIGH) or on the valid level (the trigger being logically HIGH), following registers can be used:

Table 119: Spectrum API: pulse generator trigger MUX2 registers with their available settings

Register Value Direction Description

SPC_XIO_PULSEGEN0_MUX2_SRC 601006 read/write Selects the input source for MUX2 for pulse generator 0. 

SPC_XIO_PULSEGEN1_MUX2_SRC 601106 read/write Selects the input source for MUX2 for pulse generator 1. 

SPC_XIO_PULSEGEN2_MUX2_SRC 601206 read/write Selects the input source for MUX2 for pulse generator 2. 

SPC_XIO_PULSEGEN3_MUX2_SRC 601306 read/write Selects the input source for MUX2 for pulse generator 3. 

SPCM_PULSEGEN_MUX2_SRC_UNUSED 0 No input of MUX2 is used in creating the trigger condition for the pulse generator. A static logic HIGH is 
used, so that the MUX output is transparent for the following AND gate.

SPCM_PULSEGEN_MUX2_SRC_SOFTWARE 1 This input reflects the positive edge generated by issuing the SPCM_PULSEGEN_CMD_FORCE command.

SPCM_PULSEGEN_MUX2_SRC_CARDTRIGGER 2 This input of MUX2 reflects the trigger detection of the acquisition/replay. The trigger output goes HIGH as 
soon as the card’s main trigger is recognized. After end of acquisition/replay it is LOW again. In Multiple 
Recording/Gated Sampling/ABA mode it goes LOW after the acquisition of the current segment stops. In 
FIFO single mode the trigger output is HIGH until FIFO mode is stopped.
The signal is identical to what a XIO output is providing when using SPCM_XMODE_TRIGOUT.

SPCM_PULSEGEN_MUX2_SRC_PULSEGEN0 3 Input to MUX2 is set to output of pulse generator 0/1/2 or 3.
This can be used to cascade pulse generators for creating up to four pulse repetition time scales.
Each pulse generator can select to be triggered by any of the other pulse generator’s output.
Selecting its own pulse generator’s output as a trigger (loopback) is not allowed and will lead to a driver 
error.

SPCM_PULSEGEN_MUX2_SRC_PULSEGEN1 4

SPCM_PULSEGEN_MUX2_SRC_PULSEGEN2 5

SPCM_PULSEGEN_MUX2_SRC_PULSEGEN3 6

SPCM_PULSEGEN_MUX2_SRC_XIO0 7 Input to MUX2 is set to the input signal coming in from multi-purpose line of X0.
M2p: Since X0 is an output only, it therefore is not allowed to be used as an input.

SPCM_PULSEGEN_MUX2_SRC_XIO1 8 Input to MUX2 is set to the input signal coming in from multi-purpose line of X1.

SPCM_PULSEGEN_MUX2_SRC_XIO2 9 Input to MUX2 is set to the input signal coming in from multi-purpose line of X2.

SPCM_PULSEGEN_MUX2_SRC_XIO3 10 Input to MUX2 is set to the input signal coming in from multi-purpose line of X3.
M4i/M4x: Since X3 is not available, it therefore is not allowed to be used as an input.

Table 120: Spectrum API: pulse generator command register for trigger forcing by software

Register Value Direction Description

SPC_XIO_PULSEGEN_COMMAND 601501 write only Executes a command for the pulse generator option.

SPCM_PULSEGEN_CMD_FORCE 1h Generate a single rising edge, that is common for all pulse generator engines. This allows to start/trigger the output 
of all enabled pulse generators synchronously by issuing a software command.

Table 121: Spectrum API: pulse generator additional configuration registers with the available settings

Register Value Direction Description

SPC_XIO_PULSEGEN0_CONFIG 601007 read/write Bitmask with additional configuration for pulse generator 0.

SPC_XIO_PULSEGEN1_CONFIG 601107 read/write Bitmask with additional configuration for pulse generator 1.

SPC_XIO_PULSEGEN2_CONFIG 601207 read/write Bitmask with additional configuration for pulse generator 2.

SPC_XIO_PULSEGEN3_CONFIG 601307 read/write Bitmask with additional configuration for pulse generator 3.

SPCM_PULSEGEN_CONFIG_MUX1_INVERT 1h When bit is set, the output of MUX1 is logically inverted.

SPCM_PULSEGEN_CONFIG_MUX2_INVERT 2h When bit is set, the output of MUX2 is logically inverted.

SPCM_PULSEGEN_CONFIG_INVERT 4h When bit is set, the output of the pulse generator is logically inverted.

SPCM_PULSEGEN_CONFIG_HIGH 8h As default the pulse generator’s trigger input is sensitive only to a rising edge. When using this configura-
tion, the input will not look for an active edge, but rather detect a HIGH level. This is similar to the distinc-
tion of the card’s main trigger modes, when choosing between SPC_TM_POS and SPC_TM_HIGH.



Pulse Generator (Firmware Option) Setting up the Pulse Generator

(c) Spectrum Instrumentation GmbH 142

Since the register is implemented as a bitmask, any combination of the above configuration flags is possible.

Configuring Multi Purpose lines to output generated pulses
Each of the up to four on-board multi purpose I/O lines can be programmed to output the pulses generated by its corresponding pulse gen-
erator unit, making it available for any external devices.

Please check the available modes by reading the SPCM_X0_AVAILMODES, SPCM_X1_AVAILMODES, SPCM_X2_AVAILMODES and
SPCM_X3_AVAILMODES register first. The available modes may differ from card to card and may be enhanced with new driver/firmware 
versions to come.

Please note that a change to the SPCM_X0_MODE, SPCM_X1_MODE, SPCM_X2_MODE or SPCM_X3_MODE will 
only be updated with the next call to either the M2CMD_CARD_START or M2CMD_CARD_WRITESETUP register. 
For further details please see the relating chapter on the M2CMD_CARD registers.

// enable the inverters on MUX1 and MUX2 outputs for pulse generator 2
int32 lPulseGenConfig = (SPCM_PULSEGEN_CONFIG_MUX1_INVERT | SPCM_PULSEGEN_CONFIG_MUX2_INVERT);

spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN2_CONFIG, lPulseGenConfig);

Table 122: Spectrum API: XIO lines and mode software registers with their reduced to the settings required for outputting pulses

Register Value Direction Description

SPCM_X0_AVAILMODES 600300 read Bitmask with all bits of the below mentioned modes showing the available modes for (X0)

SPCM_X1_AVAILMODES 600301 read Bitmask with all bits of the below mentioned modes showing the available modes for (X1)

SPCM_X2_AVAILMODES 600302 read Bitmask with all bits of the below mentioned modes showing the available modes for (X2)

SPCM_X3_AVAILMODES 600303 read Bitmask with all bits of the below mentioned modes showing the available modes for (X3)

SPCM_X0_MODE 600200 read/write Defines the mode for (X0). Only one mode selection is possible to be set at a time

SPCM_X1_MODE 600201 read/write Defines the mode for (X1). Only one mode selection is possible to be set at a time

SPCM_X2_MODE 600202 read/write Defines the mode for (X2). Only one mode selection is possible to be set at a time

SPCM_X3_MODE 600203 read/write Defines the mode for (X3). Only one mode selection is possible to be set at a time

SPCM_XMODE_DISABLE 00000000h No mode selected. Output is tristate (default setup)

... ... For all other modes please see chapter “Multi Purpose I/O Lines”.

SPCM_XMODE_PULSEGEN 00080000h A/D and D/A cards only (optional):
Connector reflects the output of the same index pulse generator (X1 can output pulses from pulse generator 1, X2 can 
output pulses from pulse generator 2, ... etc.).
On M4i/M4x cards with three XIO lines (X0, X1, X2) and four pulse generators, pulses from pulse generator 3 can-
not be output, but can still be used in cascading configurations to trigger another pulse generator.



Pulse Generator (Firmware Option) Programming Example

(c) Spectrum Instrumentation GmbH 143

Programming Example
The following example shows in principle, the steps required for generating a single, repetitive pulse with one of the pulse generators and 
how to output that pulse on the matching multi-purpose I/O line:

Spectrum provides a dedicated programming example for the pulse generator feature as part of the stand-
ard example package. This example is showing different and more complex configurations than shown 
above, e.g., cascading of multiple pulse generators for more complex pulse generation time scales.

  

// First we set up the channel selection and the clock.
// For this example we enable only one channel to be able to use max sampling rate on all card types.
spcm_dwSetParam_i32 (hCard, SPC_CHENABLE, CHANNEL0);

// Read out the max. supported sampling rate ...
int64 llMaxSR = 0;
spcm_dwGetParam_i64 (hCard, SPC_PCISAMPLERATE, &llMaxSR);

// ... and use this as the card’s sampling rate
spcm_dwSetParam_i64 (hCard, SPC_SAMPLERATE, llMaxSR);

// Read out the clock, at which the pulse generator will run with the above set sampling rate.
int64 llPulseGenClock_Hz = 0;
spcm_dwGetParam_i64 (hCard, SPC_XIO_PULSEGEN_CLOCK, &llPulseGenClock_Hz);

// Configure X0 to output signal from corresponding pulse generator 0
spcm_dwSetParam_i32 (hCard, SPCM_X0_MODE, SPCM_XMODE_PULSEGEN);

// Setup pulse generator 0 (output on X0)
// to generate a continuous signal with 1 MHz and ~50% duty-cycle
int32 lLenFor1MHz = static_cast < int32 > (llPulseGenClock_Hz / MEGA(1));
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN0_MODE, SPCM_PULSEGEN_MODE_TRIGGERED);
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN0_LEN,  lLenFor1MHz);

// An integer division by 2 will be truncated if lLenFor1MHz is an odd number,
// resulting in a slightly shorter HIGH than LOW time.
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN0_HIGH,  lLenFor1MHz / 2);

// Set LOOPS to 0: repeat infinitely
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN0_LOOPS, 0);               

// Configure pulse generator to be triggered/started by software force command
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN0_MUX1_SRC, SPCM_PULSEGEN_MUX1_SRC_UNUSED);
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN0_MUX2_SRC, SPCM_PULSEGEN_MUX2_SRC_SOFTWARE);

// Enable the selected pulse generator and hence arm its trigger detection
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN_ENABLE, SPCM_PULSEGEN_ENABLE0);

// Write the settings to the card:
// This will update the clock section to generate the programmed frequencies
// (SPC_SAMPLERATE) and also write the pulse generator settings to the card.
spcm_dwSetParam_i32 (hCard, SPC_M2CMD, M2CMD_CARD_WRITESETUP);

// Start all armed pulse generators (in this case just one) by a software command
spcm_dwSetParam_i32 (hCard, SPC_XIO_PULSEGEN_COMMAND, SPCM_PULSEGEN_CMD_FORCE);

// Wait until a key is pressed
printf ("\nPress a key to stop the pulse generator(s) ");
cGetch (); 

// Stop all running pulse generators
spcm_dwSetParam_i32(hCard, SPC_XIO_PULSEGEN_ENABLE, 0);
spcm_dwSetParam_i32(hCard, SPC_M2CMD, M2CMD_CARD_WRITESETUP);



Option Star-Hub Star-Hub introduction

(c) Spectrum Instrumentation GmbH 144

Option Star-Hub

Star-Hub introduction
The purpose of the Star-Hub is to extend the number of channels available for acquisition or generation by interconnecting multiple cards and 
running them simultaneously.

The Star-Hub option allows to synchronize several cards of the same M5i series that are mounted within one host system (PC). Up to eight 
cards can be synchronized, including the card carrying the Star-Hub option.

You can order the Star-Hub option with 2, 4 or 8 synchronization cables included. Additional synchronization cables for extending an existing 
setup or as a replacement can be ordered separately.

The Star-Hub allows synchronizing cards of the same family only. It is not possible to synchronize cards of 
different families!

The Star-Hub is implemented as a piggy -back module that is mounted to one of the cards. For details on how to install several cards including 
the one carrying the Star-Hub module, please refer to the section on hardware installation.

When the cards are synchronized using Star-Hub options, any phase delay between the sampling clocks of the synchronized cards is kept 
to a minimum, and for triggering no additional delay between the trigger events is injected. The card holding the Star-Hub is automatically 
also the clock master. Any one of the synchronized cards can be part of the trigger generation.

Star-Hub trigger engine
The trigger bus between an M5i card and the Star-Hub option consists of several lines. Some of them send the trigger information from the 
card’s trigger engine to the Star-Hub and some receives the resulting trigger from the Star-Hub. All trigger events from the different cards 
connected are combined with OR on the Star-Hub.

While the returned trigger is identical for all synchronized cards, the sent out trigger of every single card depends on their trigger settings.

Star-Hub clock engine
The card holding the Star-Hub is the clock master for the complete system. If 
you need to feed in an external clock to a synchronized system the clock has 
to be connected to the master card. Slave cards cannot generate a Star-Hub 
system clock. As shown in the drawing on the right the clock master can use 
either the programmable quartz 1 or the external clock input to be broadcast 
to all other cards.

All cards including the clock master itself receive the distributed clock with 
equal phase information. This makes sure that there is no phase delay be-
tween the cards.

Depending on whether the external reference clock is used with a single card or with multiple cards connected/synchronized via 
Star-Hub, the externally fed in clock must be either connected to the “Clock-In” connector of the card itself or connected to the Clock 
Input located on the additional PCIe bracket of the Star-Hub module.

 

Software Interface
The software interface is similar to the card software interface that is explained earlier in this manual. The same functions and some of the 
registers are used with the Star-Hub. The Star-Hub is accessed using its own handle which has some extra commands for synchronization 
setup. All card functions are programmed directly on card as before. There are only a few commands that need to be programmed directly 
to the Star-Hub for synchronization.

The software interface as well as the hardware supports multiple Star-Hubs in one system. Each set of cards connected by a Star-Hub then 
runs totally independent. It is also possible to mix cards that are connected with the Star-Hub with other cards that run independent in one 
system.

Star-Hub Initialization
The interconnection between the Star-Hubs is probed at driver load time and does not need to be programmed separately. Instead the cards 
can be accessed using a logical index. This card index is only based on the ordering of the cards in the system and is not influenced by the 
current cabling. It is even possible to change the cable connections between two system starts without changing the logical card order that 
is used for Star-Hub programming.

Table 123: star-hub clock overview diagram



Option Star-Hub Software Interface

(c) Spectrum Instrumentation GmbH 145

The Star-Hub initialization must be done AFTER initialization of all cards in the system. Otherwise the inter-
connection won’t be received properly.

The Star-Hubs are accessed using a special device name „sync“ followed by the index of the star-hub to access. The Star-Hub is handled 
completely like a physical card allowing all functions based on the handle like the card itself.

Example with 4 cards and one Star-Hub (no error checking to keep example simple)

Example for a digitizerNETBOX or generatorNETBOX with two internal digitizer/generator modules, This example is also suitable for 
accessing a remote server with two cards installed:

When opening the Star-Hub the cable interconnection is checked. The Star-Hub may return an error if it sees internal cabling problems or if 
the connection between Star-Hub and the card that holds the Star-Hub is broken. It can’t identify broken connections between Star-Hub and 
other cards as it doesn’t know that there has to be a connection.

The synchronization setup is done using bit masks where one bit stands for one recognized card. All cards that are connected with a Star-
Hub are internally numbered beginning with 0. The number of connected cards as well as the connections of the star-hub can be read out 
after initialization. For each card that is connected to the star-hub one can read the index of that card:

In standard systems where all cards are connected to one star-hub reading the star-hub logical index will simply return the index of the card 
again. This results in bit 0 of star-hub mask being 1 when doing the setup for card 0, bit 1 in star-hub mask being 1 when setting up card 1 

drv_handle  hSync;
drv_handle  hCard[4];

for (i = 0; i < 4; i++)
    {
    sprintf (s, "/dev/spcm%d", i);
    hCard[i] = spcm_hOpen (s);
    }
hSync = spcm_hOpen ("sync0");

...

spcm_vClose (hSync);
for (i = 0; i < 4; i++)
    spcm_vClose (hCard[i]);

drv_handle  hSync;
drv_handle  hCard[2];

for (i = 0; i < 2; i++)
    {
    sprintf (s, "TCPIP::192.168.169.14::INST%d::INSTR", i);
    hCard[i] = spcm_hOpen (s);
    }
hSync = spcm_hOpen ("sync0");

...

spcm_vClose (hSync);
for (i = 0; i < 2; i++)
    spcm_vClose (hCard[i]);

Table 124: Spectrum API: star-hub related registers for reading detected connections

Register Value Direction Description

SPC_SYNC_READ_NUMCONNECTORS 48991 read Number of connectors that the Star-Hub offers at max. (available with driver V5.6 or newer)

SPC_SYNC_READ_SYNCCOUNT 48990 read Number of cards that are connected to this Star-Hub

SPC_SYNC_READ_CARDIDX0 49000 read Index of card that is connected to star-hub logical index 0 (mask 0x0001)

SPC_SYNC_READ_CARDIDX1 49001 read Index of card that is connected to star-hub logical index 1 (mask 0x0002)

... read ...

SPC_SYNC_READ_CARDIDX7 49007 read Index of card that is connected to star-hub logical index 7 (mask 0x0080)

SPC_SYNC_READ_CARDIDX8 49008 read M2i only: Index of card that is connected to star-hub logical index 8 (mask 0x0100)

... read ...

SPC_SYNC_READ_CARDIDX15 49015 read M2i only: Index of card that is connected to star-hub logical index 15 (mask 0x8000)

SPC_SYNC_READ_CABLECON0 read Returns the index of the cable connection that is used for the logical connection 0. The cable connec-
tions can be seen printed on the PCB of the star-hub. Use these cable connection information in case 
that there are hardware failures with the star-hub cabeling.

... 49100 read ...

SPC_SYNC_READ_CABLECON15 49115 read Returns the index of the cable connection that is used for the logical connection 15.



Option Star-Hub Software Interface

(c) Spectrum Instrumentation GmbH 146

and so on. On such systems it is sufficient to read out the SPC_SYNC_READ_SYNCCOUNT register to check whether the star-hub has found 
the expected number of cards to be connected.

In case of 4 cards in one system and all are connected with the star-hub this program excerpt will return:

Let’s see a more complex example with two Star-Hubs and one independent card in one system. Star-Hub A connects card 2, card 4 and 
card 5. Star-Hub B connects card 0 and card 3. Card 1 is running completely independent and is not synchronized at all:

Now the program has to check both star-hubs:

In case of the above mentioned cabling this program excerpt will return:

For the following examples we will assume that 4 cards in one system are all connected to one star-hub to keep things easier. 

 

Setup of Synchronization
The synchronization setup only requires one additional register to enable the cards that are synchronized in the next run

The enable mask is based on the logical index explained above. It is possible to just select a couple of cards for the synchronization. All other 
cards then will run independently. Please be sure to always enable the card on which the star-hub is located as this one is a must for the 
synchronization.

spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
for (i = 0; i < lSyncCount; i++)
    {
    spcm_dwGetParam_i32 (hSync, SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
    printf ("star-hub logical index %d is connected with card %d\n“, i, lCardIdx);
    } 

star-hub logical index 0 is connected with card 0
star-hub logical index 1 is connected with card 1
star-hub logical index 2 is connected with card 2
star-hub logical index 3 is connected with card 3

card Star-Hub connection card handle star-hub handle card index in star-hub mask for this card in 
star-hub

card 0 - /dev/spcm0 0 (of star-hub B) 0x0001
card 1 - /dev/spcm1 -
card 2 star-hub A /dev/spcm2 sync0 0 (of star-hub A) 0x0001
card 3 star-hub B /dev/spcm3 sync1 1 (of star-hub B) 0x0002
card 4 - /dev/spcm4 1 (of star-hub A) 0x0002
card 5 - /dev/spcm5 2 (of star-hub A) 0x0004

for (j = 0; j < lStarhubCount; j++)
    {
    spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
    for (i = 0; i < lSyncCount; i++)
        {
        spcm_dwGetParam_i32 (hSync[j], SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
        printf ("star-hub %c logical index %d is connected with card %d\n“, (!j ? ’A’ : ’B’), i, lCardIdx);
        } 
    printf ("\n");
    }

star-hub A logical index 0 is connected with card 2
star-hub A logical index 1 is connected with card 4
star-hub A logical index 2 is connected with card 5

star-hub B logical index 0 is connected with card 0
star-hub B logical index 1 is connected with card 3

Table 125: Spectrum API: synchronization enable mask register

Register Value Direction Description

SPC_SYNC_ENABLEMASK 49200 read/write Mask of all cards that are enabled for the synchronization



Option Star-Hub Software Interface

(c) Spectrum Instrumentation GmbH 147

In our example we synchronize all four cards. The star-hub is located on card #2 and is therefor the clock master

 

Setup of Trigger
Setting up the trigger does not need any further steps of synchronization setup. Simply all trigger settings of all cards that have been enabled 
for synchronization are connected together. All trigger sources and all trigger modes can be used on synchronization as well.

Having positive edge of external trigger on card 0 to be the trigger source for the complete system needs the following setup:

Assuming that the 4 cards are analog data acquisition cards with 4 channels each we can simply setup a synchronous system with all channels 
of all cards being trigger source. The following setup will show how to set up all trigger events of all channels to be OR connected. If any of 
the channels will now have a signal above the programmed trigger level the complete system will do an acquisition:

 

Run the synchronized cards
Running of the cards is very simple. The star-hub acts as one big card containing all synchronized cards. All card commands have to be 
omitted directly to the star-hub which will check the setup, do the synchronization and distribute the commands in the correct order to all 
synchronized cards. The same card commands can be used that are also possible for single cards:

All other commands and settings need to be send directly to the card that it refers to.

 

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked

// set the clock master to 100 MS/s internal clock
spcm_dwSetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[2], SPC_SAMPLERATE, MEGA(100));

// set all the slaves to run synchronously with 100 MS/s
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLERATE, MEGA(100));
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLERATE, MEGA(100));
spcm_dwSetParam_i32 (hCard[3], SPC_SAMPLERATE, MEGA(100));

spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

spcm_dwSetParam_i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TM_NONE);
spcm_dwSetParam_i32 (hCard[2], SPC_TRIG_ORMASK, SPC_TM_NONE);
spcm_dwSetParam_i32 (hCard[3], SPC_TRIG_ORMASK, SPC_TM_NONE);

for (i = 0; i < lSyncCount; i++)
    {
    int32 lAllChannels = (SPC_TMASK0_CH0 | SPC_TMASK0_CH1 | SPC_TMASK_CH2 | SPC_TMASK_CH3);
    spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH_ORMASK0, lAllChannels);
    for (j = 0; j < 2; j++)
        {

        // set all channels to trigger on positive edge crossing trigger level 100
        spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH0_MODE + j, SPC_TM_POS);
        spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_CH0_LEVEL0 + j, 100);
        }
    }

Table 126: Spectrum API: star-hub synchronization commands

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some 
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be 
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger 
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start 
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled. 
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.



Option Star-Hub Software Interface

(c) Spectrum Instrumentation GmbH 148

This example shows the complete setup and synchronization start for our four cards:

Using one of the wait commands for the Star-Hub will return as soon as the card holding the Star-Hub has 
reached this state. However when synchronizing cards with different memory sizes there may be other cards 
that still haven’t reached this level.

 

Error Handling
The Star-Hub error handling is similar to the card error handling and uses the function spcm_dwGetErrorInfo_i32. Please see the example in 
the card error handling chapter to see how the error handling is done.

 

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, 0x000F); // all 4 cards are masked

// to keep it easy we set all card to the same clock and disable trigger
for (i = 0; i < 4; i++)
    {
    spcm_dwSetParam_i32 (hCard[i], SPC_CLOCKMODE, SPC_CM_INTPLL);
    spcm_dwSetParam_i32 (hCard[i], SPC_SAMPLERATE, MEGA(100));
    spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_ORMASK, SPC_TM_NONE);
    }

// card 0 is trigger master and waits for external positive edge
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXT0);
spcm_dwSetParam_i32 (hCard[0], SPC_TRIG_EXT0_MODE, SPC_TM_POS);

// start the cards and wait for them a maximum of 1 second to be ready
spcm_dwSetParam_i32 (hSync, SPC_TIMEOUT, 1000);
spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER);
if (spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_WAITREADY) == ERR_TIMEOUT)
    printf ("Timeout occured - no trigger received within time\n")



Option Remote Server Introduction

(c) Spectrum Instrumentation GmbH 149

Option Remote Server

Introduction
Using the Spectrum Remote Server (order code
 -SPc-RServer) it is possible to access the
M2i/M3i/M4i/M4x/M2p/M5i card(s) installed in 
one PC (server) from another PC (client) via local 
area network (LAN), similar to using a digitizerNET-
BOX, generatorNETBOX or hybridNETBOX.

It is possible to use different operating systems on 
both server and client. For example the Remote Serv-
er is running on a Linux system and the client is ac-
cessing them from a Windows system.

The Remote Server software requires, that the option  
„-SPc-RServer“  is installed on at least one card in-
stalled within the server side PC. You can either 
check this with the Control Center in the "Installed 
Card features" node or by reading out the feature 
register, as described in the „Installed features and 
options“ passage, earlier in this manual.

To run the Remote Server software, it is required to have least version 3.18 of the Spectrum SPCM driver in-
stalled. Additionally at least on one card in the server PC the feature flag SPCM_FEAT_REMOTESERVER must 
be set.

Installing and starting the Remote Server

Windows
Windows users find the Control Center installer on the USB-
Stick under „Install\win\spcm_remote_install.exe“.
After the installation has finished there will be a new start 
menu entry in the Folder "Spectrum GmbH" to start the Re-
mote Server. To start the Remote Server automatically after 
login, just copy this shortcut to the Autostart directory.

Linux
Linux users find the versions of the installer for the different 
StdC libraries under under /Install/linux/spcm_con-
trol_center/ as RPM packages.

To start the Remote Server type "spcm_remote_server" (with-
out quotation marks). To start the Remote Server automati-
cally after login, add the following line to the .bashrc or 
.profile file (depending on the used Linux distribution) in the 
user's home directory:

Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX
Before accessing the digitizerNETBOX/generatorNETBOX/hybridNETBOX one has to determine the IP address of the device. Normally that 
can be done using one of the two methods described below:

Discovery Function
The digitizerNETBOX/generatorNETBOX/hybridNETBOX responds to the VISA described Discovery function. The next chapter will show 
how to install and use the Spectrum control center to execute the discovery function and to find the Spectrum hardware. As the discovery 
function is a standard feature of all LXI devices there are other software packages that can find the device using the discovery function:

• Spectrum control center (limited to Spectrum remote products)
• free LXI System Discovery Tool from the LXI consortium (www.lxistandard.org)
• Measurement and Automation Explorer from National Instruments (NI MAX)
• Keysight Connection Expert from Keysight Technologies

spcm_remote_server&

Image 76: Overview of remote server option interaction in comparison to NETBOX devices



Option Remote Server Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX

(c) Spectrum Instrumentation GmbH 150

Additionally the discovery procedure can also be started from ones own specific application:

Finding the digitizerNETBOX/generatorNETBOX/hybridNETBOX in the network
As the digitizerNETBOX/generatorNETBOX/hybridNETBOX is a standard network device it has its own IP address and host name and can 
be found in the computer network. The standard host name consist of the model type and the serial number of the device. The serial number 
is also found on the type plate on the back of the digitizerNETBOX/generatorNETBOX/hybridNETBOX chassis.

As default DHCP (IPv4) will be used and an IP address will be automatically set. In case no DHCP server is found, an IP will be obtained 
using the AutoIP feature. This will lead to an IPv4 address of 169.254.x.y (with x and y being assigned to a free IP in the network) using a 
subnet mask of 255.255.0.0. 

The default IP setup can also be restored, by using the „LAN Reset“ button on the device.

If a fixed IP address should be used instead, the parameters need to be set according to the current LAN requirements.

 

Windows 7, Windows 8, Windows 10 
and Windows 11
Under Windows 7, Windows 8, Windows 10 
and Windows 11 the digitizerNETBOX, genera-
torNETBOX and hybridNETBOX devices are list-
ed under the „other devices“ tree with their given 
host name. 

A right click on the digitizerNETBOX or
generatorNETBOX device opens the properties 
window where you find further information on the 
device including the IP address.

From here it is possible to go the website of the 
device where all necessary information are found 
to access the device from software.

#define TIMEOUT_DISCOVERY   5000 // timeout value in ms

const uint32 dwMaxNumRemoteCards = 50;

char* pszVisa[dwMaxNumRemoteCards] = { NULL };
char* pszIdn[dwMaxNumRemoteCards]  = { NULL };

const uint32 dwMaxIdnStringLen  = 256;
const uint32 dwMaxVisaStringLen = 50;

// allocate memory for string list
for (uint32 i = 0; i < dwMaxNumRemoteCards; i++)
    {
    pszVisa[i] = new char [dwMaxVisaStringLen];
    pszIdn[i] = new char [dwMaxIdnStringLen];
    memset (pszVisa[i], 0, dwMaxVisaStringLen);
    memset (pszIdn[i], 0, dwMaxIdnStringLen);
    }

// first make discovery - check if there are any LXI compatible remote devices
dwError = spcm_dwDiscovery ((char**)pszVisa, dwMaxNumRemoteCards, dwMaxVisaStringLen, TIMEOUT_DISCOVERY);

// second: check from which manufacturer the devices are
spcm_dwSendIDNRequest ((char**)pszIdn, dwMaxNumRemoteCards, dwMaxIdnStringLen);

// Use the VISA strings of these devices with Spectrum as manufacturer
// for accessing remote devices without previous knowledge of their IP address

Image 77: Windows screenshot: finding a remote Spectrum device like digitizerNETBOX



Option Remote Server Accessing remote cards

(c) Spectrum Instrumentation GmbH 151

Troubleshooting
If the above methods do not work please try one of the following steps:

• Ask your network administrator for the IP address of the digitizerNETBOX/generatorNETBOX and access it directly over the IP address.
• Check your local firewall whether it allows access to the device and whether it allows to access the ports listed in the technical data sec-

tion.
• Check with your network administrator whether the subnet, the device and the ports that are listed in the technical data section are acces-

sible from your system due to company security settings.
 

Accessing remote cards
To detect remote card(s) from the client PC, start the Spectrum Control Center on the client and click "Netbox Discovery". All discovered cards 
will be listed under the "Remote" node.

Using remote cards instead of using local ones is as easy as using a digitizerNETBOX and only requires a few lines of code to be changed 
compared to using local cards.

Instead of opening two locally installed cards like this:

one would call spcm_hOpen() with a VISA string as a parameter instead:

to open cards on the Remote Server PC with the IP address 192.168.1.2. The driver will take care of all the network communication.

hDrv0 = spcm_hOpen ("/dev/spcm0"); // open local card spcm0
hDrv1 = spcm_hOpen ("/dev/spcm1"); // open local card spcm1

hDrv0 = spcm_hOpen ("TCPIP::192.168.1.2::inst0::INSTR"); // open card spcm0 on a Remote Server PC
hDrv1 = spcm_hOpen ("TCPIP::192.168.1.2::inst1::INSTR"); // open card spcm1 on a Remote Server PC



Mode Block Average (Firmware Option) Overview

(c) Spectrum Instrumentation GmbH 152

Mode Block Average (Firmware Option)

Overview

General Information
The Block Average Module improves the 
fidelity of any repetitive signal by reduc-
ing its random noise components. The 
Module allows multiple triggered acquisi-
tions to be made and the triggered seg-
ments to accumulated. The process 
reduces random noise improving the visi-
bility of the repetitive signal. The aver-
aged signal has an enhanced 
measurement resolution and increased 
signal-to-noise (SNR) ratio. 

The complete averaging process is per-
formed inside the FPGA of the digitizer 
and involves no CPU load at all. Averag-
ing also reduces the amount of data that 
needs to be transferred to the host PC fur-
ther reducing CPU demand and speeding 
up measurement times.

The averager has multiple modes and can 
either accumulate unconditionally or se-
lectively, only including samples that ex-
ceed a programmable threshold level 
(Threshold Defined Averaging, TDA).

The Block Average mode is fully compatible with streaming (FIFO) mode so that the digitizer can accumulate and average signals for hours 
or days without losing a single event. The Module takes advantage of an advanced trigger circuit, with very fast re-arm time, so that signals 
can be averaged at ultra-fast rates, as specified in the technical data section.

The signal processing firmware also includes the standard digitizer firmware so that normal digitizer operation can be performed with no 
limitations.

Principle of operation
In Block Average mode the ac-
quisition works very similar to the 
Multiple Recording mode.

The memory is segmented and 
with each trigger condition a pre-
defined number of samples, a 
segment, is acquired.

The Block Average option now takes a programmable number of these acquired consecutive data segments and averages them sample by 
sample over one another.

The result of one averaging operation is a segment with summed values, that has the same length as each original „RAW“ segment, but each 
sample now consists of the sum of all samples of the averaged segment at the same location in relation to the trigger signal.

In order to get any meaningful results out of the Block Average operation, a repetitive signal is required along with a stable trigger condition.

 

Image 78: block average FPGA option - block diagram

Image 79: block average FPGA option - principle of operation



Mode Block Average (Firmware Option) Recording modes

(c) Spectrum Instrumentation GmbH 153

Setting up the Acquisition
The Block Average mode allows the acquisition of data blocks 
with multiple trigger events without restarting the hardware.

With each trigger event, one RAW segment will be acquired (as 
shown) and the segment is then accumulated by the average 
firmware. If the number of accumulations is reached, the data is 
transferred to the on-board memory. So, the on-board memory 
will again be divided into several segments of the same size to 
hold the processed data, with the data now being 32bit per 
sample. 
As this mode is totally controlled in hardware there is a very 
small re-arm time from end of one segment until the trigger de-
tection is enabled again. You’ll find that re-arm time in the tech-
nical data section of this manual.

The following table shows the register for defining the structure of the segments to be recorded with each trigger event.

Each segment consist of pretrigger and posttrigger samples. The user always has to set the total segment size and the posttrigger, while the 
pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using Block Averaging the maximum pretrigger is limited depending on the number of active channels. 
When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. Please 
have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode
With every detected trigger event one data block is filled with data. The length of one triggered segment is set by the value of the segment 
size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.
Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Block Average. For detailed infor-
mation on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

FIFO Mode
The Block Averaging in FIFO Mode is similar to the Block Averaging in Standard Mode. In contrast to the standard mode it is not necessary 
to program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block by the 
driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data processing by 
the user program. This mode significantly reduces the amount of data to be transferred on the PCI bus as gaps of no interest do not have to 
be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Block Averaging.
The advantage of Block Averaging in FIFO mode is that you can stream data online to the host system. You can make real-time data process-
ing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Block Averaging. For detailed 
information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Table 127: Spectrum API: software registers and register settings for programming the block average mode

Register Value Direction Description

SPC_POSTTRIGGER 10100 read/write Defines the number of samples per channel to be recorded after the trigger event.

SPC_SEGMENTSIZE 10010 read/write Size of one triggered segment (in RAW samples) as well as the averaged segment (in 32bit samples). 
The total number of samples to be recorded per channel after detection of one trigger event includes 
the time recorded before the trigger (pre trigger = segmentsize - posttrigger).

SPC_AVERAGES 10050 read/write Defines the number of triggered segments that are averaged sample per sample over one another.

Table 128: Spectrum API: card mode registers and register settings for standard block average mode

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_STD_AVERAGE 20000h Enables Block Averaging for standard acquisition with 32 bit wide result data.

Register Value Direction Description

SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded per channel.

Table 129: Spectrum API: card mode registers and register settings for FIFO block average mode

Register Value Direction Description

SPC_CARDMODE 9500 read/write Defines the used operating mode

SPC_REC_FIFO_AVERAGE 200000h Enables Block Averaging for FIFO acquisition with 32 bit wide result data.

Image 80: timing diagram of block average acquisition



Mode Block Average (Firmware Option) Limits of pre trigger, post trigger, memory size

(c) Spectrum Instrumentation GmbH 154

The number of segments to be recorded must be set separately with the register shown in the following table:

Limits of pre trigger, post trigger, memory size
The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please 
keep in mind, that each averaged sample needs 4 bytes (32 bit) of memory to be stored. The required size in memory depends on the selected 
average mode. Minimum memory size as well as minimum and maximum post trigger limits are independent of the activated channels or the 
installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account. 
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops:

All figures listed here are given in samples. An entry of [512k - 32] means [512 kSamples - 32] = 524256 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Averaging Modes
The M5i block averaging unit allows to select which of the RAW samples coming from the ADC are used for accumulation/averaging and 
which are not. This can be defined on a per channel base:

Standard Average Mode
The default “normal” mode does simply use all incoming samples for accumulation, and hence requires no further configuration to be done.

Threshold Defined Averaging (TDA)
Certain applications have a very low-level signal of interest with its rare events sitting barely above a noisy baseline. One such application 
is time of flight mass spectroscopy (TOFMS).

Table 130: Spectrum API: block average mode loop register and register settings

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded

0 Recording will be infinite until the user stops it.

1 … [4G - 1] Defines the total averaged segments to be recorded. 

Table 131: Spectrum API: Limits of pre trigger, post trigger, memory size, averages and loops for block averaging

Activated Used Memory size Pre trigger Post trigger Segment size Loops Number ofAverages
Channels Mode SPC_MEMSIZE

(defined by
segment and post)

SPC_POSTTRIGGER
(limited by

max. pretrigger)

SPC_SEGMENTSIZE
(limited by

max. AverageMem)

SPC_LOOPS SPC_AVERAGES

Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step Min Max Step

1 Ch
Standard Average 64 Mem 32

32 64k 32 32 1M-32 32 64 1M 32
not used

2 1024 1
FIFO Average not used 0 () 4G - 1 1

2 Ch
Standard Average 64 Mem/2 32

32 32k 32 32 512k-32 32 64 512k 32
not used

2 1024 1
FIFO Average not used 0 () 4G - 1 1

Table 132: Spectrum-API: maximum memory sizes for different memory upgrade options

Installed Memory

2 GSample (RAW samples)
equals
1 GSample (32bit Average Samples)

8 GSample (RAW samples)
equals
4 GSample (32bit Average Samples)

(Option: M5i.xxx-MEM8GS)
Mem 1 GSample 4 GSample
Mem / 2 512 MSample 2 GSample

Table 133: Spectrum API: block average mode registers for controlling accumulation (normal or threshold defined averaging TDA)

Register Value Direction Description

SPC_AVAILAVRGMODES 424291 read Bitmask in which all bits of the below mentioned AVRGMODEs are set, if supported by the firmware.

SPC_AVRGMODE_CH0 42430 read/write Defines the averaging mode for channel 0.

SPC_AVRGMODE_CH1 42431 read/write Defines the averaging mode for channel 1.

AVRGMODE_NORMAL 0h Unconditional averaging: every RAW sample will be accumulated. 

AVRGMODE_TDA_HIGH 1h Threshold Defined Averaging: Only RAW samples above a programmed threshold will be accumulated.
Samples below that threshold will be replaced by a programmed replacement value.

The corresponding threshold value must be more positive than the corresponding replacement value.

AVRGMODE_TDA_LOW 2h Threshold Defined Averaging: Only RAW samples below a programmed threshold will be accumulated.
Samples above that threshold will be replaced by a programmed replacement value.

The corresponding threshold value must be more negative than the corresponding replacement value.



Mode Block Average (Firmware Option) Clock Modes

(c) Spectrum Instrumentation GmbH 155

The process of averaging in itself already reduces random noise with each accumulation step. To further enhance the visibility of the signal 
of interest, even when synchronous noise is present, the M5i averager includes the Threshold Defined Averaging (TDA) mode. This mode 
allows samples below a set threshold to either be excluded from the accumulation process, or replaced with a user defined (hence known) 
value.

For the decision on which samples to include and which to replace, defining a threshold level is required:

The ADC samples that do not exceed this threshold will be dropped and replaced with a constant value as defined by:

The output of the “level selection” block, shown in the
averager’s block diagram using AVRGMODE_TDA_HIGH 
would look the image on the right.

All samples that are above a threshold level are forwarded 
to the accumulator as is, while all samples below are re-
placed with the defined value, which is then forwarded.

So, the accumulator would see data segments on its input 
that are similar to the waveform shown at the bottom of the 
image. For best results, the threshold level should be set out-
side the level of noise.

When using TDA_HIGH, the replacement value must be low-
er than the threshold value and both levels must be defined 
in LSB of the ADC. As a result, the extracted events will be 
“positive” pulses.

TDA_LOW works the other way round. Only samples that 
are below the threshold level will be forwarded to the accu-
mulator, while those above it are replaced before being for-
warded. In this case the replacement value must be higher 
than the threshold level and the extracted events will be 
“negative” pulses.

If a sample does not exceed the threshold over all RAW segments that create one summed segment, it’s final value will be a known value: 
(NoOfAverages * Replacement).

To remove the absolute replacement value from all samples, for normalization, the application software can subtract
(NoOfAverages * Replacement) from every sample in post-processing. 

For increasing the number of averages per segment, beyond what’s possible in the firmware, the application software can simply sum up 
multiple already averaged segments.

Clock Modes
When using Block Averaging all of the card’s clock modes can be used. Also all of the allowed sample rates can be used. For detailed 
information on the available clock modes, please take a look at the relating chapter earlier in this manual.

Trigger Modes
When using Block Averaging all of the card’s trigger modes can be used. For detailed information on the available trigger modes, please 
take a look at the relating chapter earlier in this manual.

Table 134: Spectrum API: TDA - threshold level registers

Register Value Direction Description Range

SPC_TDA_THRESHOLD_CH0 42440 read/write Defines the threshold value for threshold defined averaging on channel 0 in 
LSB.

-2047 to +2047

SPC_TDA_THRESHOLD_CH1 42441 read/write Defines the threshold value for threshold defined averaging on channel 1 in 
LSB.

-2047 to +2047

Table 135: Spectrum API: TDA - replacement value registers

Register Value Direction Description Range

SPC_TDA_REPLACEMENT_CH0 42450 Sets replacement sample for threshold defined averaging on channel 0 in LSB. -2047 to +2047

SPC_TDA_REPLACEMENT_CH1 42451 Sets replacement sample for threshold defined averaging on channel 1 in LSB. -2047 to +2047

Image 81: visualization of the effects of threshold defined averaging (example for positive pulses)



Mode Block Average (Firmware Option) Output Data Format

(c) Spectrum Instrumentation GmbH 156

Output Data Format
When using Block Averaging mode, the resulting samples will be 32 bit signed integer values per channel, that each consist of the sum of a 
particular sample over all averaged segments. The following table illustrates this with the first four of  ’S+1’ samples of one channel
(A0, A1, A2, A3, ..., AS) that are N times averaged (summed):

The resulting „resolution“ of the samples increases with the number of averages. For example averaging 12 bit RAW samples two times results 
in a final resolution of 13 bit, averaging them four times results in a sample with 14 bit „resolution“.

By not dividing down the samples by the number of averages in the firmware and providing the user application with the 32 bit wide sums, 
one can take full advantage of the enhanced resolution by using proper data formats in the application software.

Data organization
Data is organized in a multiplexed way in the transfer buffer the same way as the RAW samples would be. If using 2 channels data of first 
activated channel comes first, then data of second channel:

The samples are re-named for better readability. A0 is sample 0 of channel 0, B4 is sample 4 of channel 1, and so on. The averaged samples 
now just have a wider format of 32 bit independent of the original RAW sample resolution.

Programming examples
The following example shows how to set up the card for Block Average in standard mode with 32 bit wide output data.

Table 136: Spectrum API: block average mode output sample format

Samples of one segment with segment size S+1 over time
Triggered Segment No. 1 A0(1) A1(1) A2(1) A3(1) ... AS(1)

Triggered Segment No. 2 A0(2) A1(2) A2(2) A3(2) ... AS(2)

... ... ... ... ... ... ...
Triggered Segment No. N A0(N) A1(N) A2(N) A3(N) ... AS(N)

Resulting averaged Samples ...

Table 137: Spectrum API: block average mode data organization

Activated Channels Ch0 Ch1 32bit wide averaged samples ordering in buffer memory starting with data offset zero
1 channel X A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
1 channel X B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16
2 channels X X A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8

// define some parameters via variables
uint32 dwNoOfChannels =     2;             // Two active channels (e.g. Ch0 and Ch1)
uint64 qwNumberOfSegments = 4;             // four averaged segments will be acquired
uint64 qwSegmentSize =      1024;          // Set the segment size to 1024 samples
uint64 qwPosttrigger =      768;           // Set the posttrigger to 768 samples and therefore
                                           // the pretrigger will be 256 samples

uint64 qwSetMemsize = qwSegmentSize * qwNumberOfSegments; // calculate memsize

// for averaging the number of bytes per sample is fixed to 4 (32 bit samples)
// and memory for all channels is needed
uint64 qwMemInBytes = qwSetMemsize * sizeof(int32) * dwNoOfChannels;
void* pvBuffer = pvAllocMemPageAligned (qwMemInBytes);

// set up DMA transfer with the card
spcm_dwDefTransfer_i64 (stCard.hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 0, pvBuffer, 0, qwMemInBytes);

// configure acquisition
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_AVERAGE);  // Enables Standard Averaging
spcm_dwSetParam_i32 (hDrv, SPC_AVERAGES, 100);                  // 100 triggered acquisitions will be 
                                                                // averaged for one output segment
spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, qwSegmentSize);
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, qwPosttrigger);
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE,     qwSetMemsize);

spcm_dwSetParam_i32 (hDrv, SPC_AVRGMODE_CH0, AVRGMODE_NORMAL); // normal avareging for Ch0
spcm_dwSetParam_i32 (hDrv, SPC_AVRGMODE_CH1, AVRGMODE_HIGH);   // TDA for Ch1
spcm_dwSetParam_i32 (hDrv, SPC_TDA_THRESHOLD_CH1,     512);    // sample below threshold of +512 LSB ...
spcm_dwSetParam_i32 (hDrv, SPC_TDA_REPLACEMENT_CH1, -2040);    // ... will be replaced with value -2040

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE,  SPC_TM_POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask

A0(i)
i 1=

N

 A1(i)
i 1=

N

 A2(i)
i 1=

N

 A3(i)
i 1=

N

 AS(i)
i 1=

N





Mode Block Average (Firmware Option) Programming examples

(c) Spectrum Instrumentation GmbH 157

The following example shows how to set up the card for Block Average in FIFO mode.

 

uint64 qwNumberOfSegments = 256;           // 256 averaged segments will be acquired
uint64 qwSegmentSize =      2048;          // Set the segment size to 2048 samples
uint64 qwPosttrigger =      1920;          // Set the posttrigger to 1920 samples and therefore
                                           // the pretrigger will be 128 samples

// FIFO buffer setup not shown here for simplicity. See FIFO buffer setup in according chapter for details.

// configure acquisition
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_AVERAGE); // Enables FIFO Averaging
spcm_dwSetParam_i32 (hDrv, SPC_AVERAGES, 100);                  // 100 triggered acquisitions will be 
                                                                // averaged for one output segment
spcm_dwSetParam_i64 (hDrv, SPC_SEGMENTSIZE, qwSegmentSize);
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, qwPosttrigger);
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE,     qwSetMemsize);
spcm_dwSetParam_i64 (hDrv, SPC_LOOPS        qwNumberOfSegments);
spcm_dwSetParam_i32 (hDrv, SPC_AVRGMODE_CH0, AVRGMODE_NORMAL);  // normal averaging (one channel assumed)

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXT0_MODE,  SPC_TM_POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXT0); // and enable it within the trigger OR-mask



Appendix Error Codes

(c) Spectrum Instrumentation GmbH 158

Appendix

Error Codes
The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and 
change the settings to run the program.

Table 138: Spectrum API: driver error codes and error description

error name value 
(hex)

value 
(dec.)

error description

ERR_OK 0h 0 Execution OK, no error.

ERR_INIT 1h 1 An error occurred when initializing the given card. Either the card has already been opened by another process or 
an hardware error occurred.

ERR_TYP 3h 3 Initialization only: The type of board is unknown. This is a critical error. Please check whether the board is correctly 
plugged in the slot and whether you have the latest driver version.

ERR_FNCNOTSUPPORTED 4h 4 This function is not supported by the hardware version.

ERR_BRDREMAP 5h 5 The board index re map table in the registry is wrong. Either delete this table or check it carefully for double values.

ERR_KERNELVERSION 6h 6 The version of the kernel driver is not matching the version of the DLL. Please do a complete re-installation of the hard-
ware driver. This error normally only occurs if someone copies the driver library and the kernel driver manually. 

ERR_HWDRVVERSION 7h 7 The hardware needs a newer driver version to run properly. Please install the driver that was delivered together with 
the card. 

ERR_ADRRANGE 8h 8 One of the address ranges is disabled (fatal error), can only occur under Linux.

ERR_INVALIDHANDLE 9h 9 The used handle is not valid.

ERR_BOARDNOTFOUND Ah 10 A card with the given name has not been found.

ERR_BOARDINUSE Bh 11 A card with given name is already in use by another application.

ERR_EXPHW64BITADR Ch 12 Express hardware version not able to handle 64 bit addressing -> update needed.

ERR_FWVERSION Dh 13 Firmware versions of synchronized cards or for this driver do not match -> update needed.

ERR_SYNCPROTOCOL Eh 14 Synchronization protocol versions of synchronized cards do not match -> update needed

ERR_LASTERR 10h 16 Old error waiting to be read. Please read the full error information before proceeding. The driver is locked until the 
error information has been read.

ERR_BOARDINUSE 11h 17 Board is already used by another application. It is not possible to use one hardware from two different programs at 
the same time.

ERR_ABORT 20h 32 Abort of wait function. This return value just tells that the function has been aborted from another thread. The driver 
library is not locked if this error occurs.

ERR_BOARDLOCKED 30h 48 The card is already in access and therefore locked by another process. It is not possible to access one card through 
multiple processes. Only one process can access a specific card at the time.

ERR_DEVICE_MAPPING 32h 50 The device is mapped to an invalid device. The device mapping can be accessed via the Control Center.

ERR_NETWORKSETUP 40h 64 The network setup of a digitizerNETBOX has failed.

ERR_NETWORKTRANSFER 41h 65 The network data transfer from/to a digitizerNETBOX has failed.

ERR_FWPOWERCYCLE 42h 66 Power cycle (PC off/on) is needed to update the card's firmware (a simple OS reboot is not sufficient !)

ERR_NETWORKTIMEOUT 43h 67 A network timeout has occurred.

ERR_BUFFERSIZE 44h 68 The buffer size is not sufficient (too small).

ERR_RESTRICTEDACCESS 45h 69 The access to the card has been intentionally restricted.

ERR_INVALIDPARAM 46h 70 An invalid parameter has been used for a certain function.

ERR_TEMPERATURE 47h 71 The temperature of at least one of the card’s sensors measures a temperature, that is too high for the hardware. 

ERR_REG 100h 256 The register is not valid for this type of board.

ERR_VALUE 101h 257 The value for this register is not in a valid range. The allowed values and ranges are listed in the board specific docu-
mentation.

ERR_FEATURE 102h 258 Feature (option) is not installed on this board. It’s not possible to access this feature if it’s not installed. 

ERR_SEQUENCE 103h 259 Command sequence is not allowed. Please check the manual carefully to see which command sequences are possi-
ble.

ERR_READABORT 104h 260 Data read is not allowed after aborting the data acquisition.

ERR_NOACCESS 105h 261 Access to this register is denied. This register is not accessible for users.

ERR_TIMEOUT 107h 263 A timeout occurred while waiting for an interrupt. This error does not lock the driver.

ERR_CALLTYPE 108h 264 The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high and low 
double word) version.

ERR_EXCEEDSINT32 109h 265 The return value is int32 but the software register exceeds the 32 bit integer range. Use double int32 or int64 
accesses instead, to get correct return values.

ERR_NOWRITEALLOWED 10Ah 266 The register that should be written is a read-only register. No write accesses are allowed.

ERR_SETUP 10Bh 267 The programmed setup for the card is not valid. The error register will show you which setting generates the error mes-
sage. This error is returned if the card is started or the setup is written.

ERR_CLOCKNOTLOCKED 10Ch 268 Synchronization to external clock failed: no signal connected or signal not stable. Please check external clock or try to 
use a different sampling clock to make the PLL locking easier.

ERR_MEMINIT 10Dh 269 On-board memory initialization error. Power cycle the PC and try another PCIe slot (if possible). In case that the error 
persists, please contact Spectrum support for further assistance.

ERR_POWERSUPPLY 10Eh 270 On-board power supply error. Power cycle the PC and try another PCIe slot (if possible). In case that the error persists, 
please contact Spectrum support for further assistance.

ERR_ADCCOMMUNICA-
TION

10Fh 271 Communication with ADC failed.P ower cycle the PC and try another PCIe slot (if possible). In case that the error per-
sists, please contact Spectrum support for further assistance.

ERR_CHANNEL 110h 272 The channel number may not be accessed on the board: Either it is not a valid channel number or the channel is not 
accessible due to the current setup (e.g. Only channel 0 is accessible in interlace mode) 



Appendix Error Codes

(c) Spectrum Instrumentation GmbH 159

 

Spectrum Knowledge Base 
You will also find additional help and information in our knowledge base available on our website:

https://spectrum-instrumentation.com/support/knowledgebase/index.php

ERR_NOTIFYSIZE 111h 273 The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page size of 
4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512, 1k or 2k. For 
ABA and timestamp the notify size can be 2k as a minimum.

ERR_RUNNING 120h 288 The board is still running, this function is not available now or this register is not accessible now.

ERR_ADJUST 130h 304 Automatic card calibration has reported an error. Please check the card inputs.

ERR_PRETRIGGERLEN 140h 320 The calculated pretrigger size (resulting from the user defined posttrigger values) exceeds the allowed limit.

ERR_DIRMISMATCH 141h 321 The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer data from 
PC memory to card if the card is an acquisition card nor it is possible to transfer data from card to PC memory if the 
card is a generation card.

ERR_POSTEXCDSEGMENT 142h 322 The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of the multiple 
recording segments is only possible by using the delay trigger!

ERR_SEGMENTINMEM 143h 323 Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The programmed 
segment size must match the programmed memory size.

ERR_MULTIPLEPW 144h 324 Multiple pulsewidth counters used but card only supports one at the time.

ERR_NOCHANNELPWOR 145h 325 The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND conjunction 
of the channel trigger sources.

ERR_ANDORMASKOVRLAP 146h 326 Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used either in the 
AND mask or in the OR mask, no source can be used for both.

ERR_ANDMASKEDGE 147h 327 One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode using an 
edge trigger. The AND mask can only work with level trigger modes.

ERR_ORMASKLEVEL 148h 328 One channel is activated for trigger detection in the OR mask but has been programmed to a trigger mode using a 
level trigger. The OR mask can only work together with edge trigger modes.

ERR_EDGEPERMOD 149h 329 This card is only capable to have one programmed trigger edge for each module that is installed. It is not possible to 
mix different trigger edges on one module.

ERR_DOLEVELMINDIFF 14Ah 330 The minimum difference between low output level and high output level is not reached.

ERR_STARHUBENABLE 14Bh 331 The card holding the star-hub must be enabled when doing synchronization.

ERR_PATPWSMALLEDGE 14Ch 332 Combination of pattern with pulsewidth smaller and edge is not allowed.

ERR_XMODESETUP 14Dh 333 The chosen setup for (SPCM_X0_MODE .. SPCM_X19_MODE) is not valid. See hardware manual for details.

ERR_AVRG_LSA 14Eh 334 Setup for Average LSA Mode not valid. Check Threshold and Replacement values for chosen AVRGMODE.

ERR_PCICHECKSUM 203h 515 The check sum of the card information has failed. This could be a critical hardware failure. Restart the system and 
check the connection of the card in the slot.

ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.

ERR_EEPROMLOAD 206h 518 Timeout occurred while loading information from the on-board EEProm. This could be a critical hardware failure. 
Please restart the system and check the PCI connector.

ERR_CARDNOSUPPORT 207h 519 The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by the driver 
but the driver did not find this special type internally. Please get the latest driver from
www.spectrum-instrumentation.com and install this one.

ERR_CONFIGACCESS 208h 520 Internal error occured during config writes or reads. Please contact Spectrum support for further assistance.

ERR_FIFOHWOVERRUN 301h 769 FIFO acquisition:
Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data wasn’t 
transferred fast enough to PC memory. 

FIFO replay:
Hardware buffer underrun in FIFO mode. The complete on-board memory has been replayed and data wasn’t trans-
ferred fast enough from PC memory.

If acquisition or replay throughput is lower than the theoretical bus throughput, check the application buffer setup.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed data length has been transferred completely.

ERR_TIMESTAMP_SYNC 310h 784 Synchronization to timestamp reference clock failed. Please check the connection and the signal levels of the refer-
ence clock input.

ERR_STARHUB 320h 800 The auto routing function of the Star-Hub initialization has failed. Please check whether all cables are mounted cor-
rectly. 

ERR_INTERNAL_ERROR FFFFh 65535 Internal hardware error detected. Please check for driver and firmware update of the card.

Table 138: Spectrum API: driver error codes and error description

error name value 
(hex)

value 
(dec.)

error description



Temperature and fan speed sensors

(c) Spectrum Instrumentation GmbH 160

Temperature and fan speed sensors
The M5i card series has multiple integrated sensors that allow to read out different internal temperatures and the fan speed. Theses functions 
are also available for the internal M5i cards inside the digitizerNETBOX, generatorNETBOX or hybridNETBOX series. In here the temperature 
can be read out for every internal card separately.

Base Card Temperature read-out registers
Up to three different temperature sensors can be read-out for each M5i base card. Depending on the specific card type not all of these tem-
perature sensors are used. The temperature can be read in different temperature scales at any time:

Front-end Module read-out registers
Up to three different temperature sensors can be read-out for each M5i front-end module. Depending on the specific card type not all of these 
temperature sensors are used. The temperature can be read in different temperature scales at any time:

Base Card fan speed read-out registers
For the two fans of the M5i base card, the temperature controlled rotation speed can be read-out:

Temperature hints
• Monitoring of the temperature figures is recommended for environments where the operating temperature can reach or even exceed the 

specified operating temperature. Please see technical data section for specified operating temperatures.
• The temperature sensors can be used to optimize the system cooling.
• Please make sure that fan intake and also the fan outlet on the front-panel is not blocked and free of dust.
 

Table 139: Spectrum API: base card read-out registers of internal temperature sensors

Register Value Direction Description

SPC_MON_TK_BASE_CTRL 500022 read Base card FPGA temperature in Kelvin

SPC_MON_TK_BASE_0 500099 read Base card fan intake temperature in Kelvin

SPC_MON_TK_BASE_1 500102 read Base card power supply temperature in Kelvin

SPC_MON_TC_BASE_CTRL 500025 read Base card FPGA temperature in degrees Celsius

SPC_MON_TC_BASE_0 500100 read Base card fan intake temperature in degrees Celsius

SPC_MON_TC_BASE_1 500103 read Base card power supply temperature in degrees Celsius

SPC_MON_TF_BASE_CTRL 500028 read Base card FPGA temperature in degrees Fahrenheit

SPC_MON_TF_BASE_0 500101 read Base card fan intake temperature in degrees Fahrenheit

SPC_MON_TF_BASE_1 500104 read Base card power supply temperature in degrees Fahrenheit

Table 140: Spectrum API: front-end module read-out registers of internal temperature sensors

Register Value Direction Description

SPC_MON_TK_MODULE_0 500023 read ADC temperature in Kelvin

SPC_MON_TK_MODULE_1 500024 read Analog front-end  temperature in Kelvin

SPC_MON_TK_MODULE_2 500089 read Front-end module power supply temperature in Kelvin

SPC_MON_TC_MODULE_0 500026 read ADC temperature in degrees Celsius

SPC_MON_TC_MODULE_1 500027 read Analog front-end temperature in degrees Celsius

SPC_MON_TC_MODULE_2 500090 read Front-end module power supply temperature in degrees Celsius

SPC_MON_TF_MODULE_0 500029 read ADC temperature in degrees Fahrenheit

SPC_MON_TF_MODULE_1 500030 read Analog front-end  temperature in degrees Fahrenheit

SPC_MON_TF_MODULE_2 500091 read Front-end module power supply temperature in degrees Fahrenheit

Table 141: Spectrum API: base card read-out registers of the fan speed sensors

Register Value Direction Description

SPC_MON_RPM_FAN0 500092 read Revolution per minute (RPM) of Fan 0 (lower fan, closer to PCIe card edge connector).

SPC_MON_RPM_FAN1 500093 read Revolution per minute (RPM) of Fan 1.(upper fan, closer to power cable connector).



Temperature and fan speed sensors

(c) Spectrum Instrumentation GmbH 161

33xx temperatures and limits
The following description shows the meaning of each temperature figure on the M5i.33xx series and also gives maximum ratings that should 
not be exceeded. All temperature figures given in degrees Celsius, the fan speed in RPM:  

Table 142: Spectrum API: temperature limits

Sensor Name Sensor Location Typical figure at 25°C
environment temperature

Maximum temperature

BASE_CTRL Inside FPGA 55°C ±5°C 80°C

BASE_0 Fan intake 35°C ±5°C 80°C

BASE_1 Power Base 40°C ±5°C 80°C

MODULE_0 Inside ADC 50°C ±5°C 90°C

MODULE_1 Amplifier Front-End 40°C ±5°C 80°C

MODULE_2 Power Front-End 30°C ±5°C 80°C

FAN_0 Power Front-End 2800 ±300 RPM ---

FAN_1 Power Front-End 2800 ±300 RPM ---



Details on M5i cards I/O lines

(c) Spectrum Instrumentation GmbH 162

Details on M5i cards I/O lines

Multi-Purpose I/O Lines
The four Multi Purpose I/O connectors 
(X0, X1, X2 and X3) of the M5i cards 
from Spectrum are protected against 
over voltage conditions.

For this purpose clamping diodes of the 
types CD1005 are used in conjunction 
with a series resistor. All four I/O lines 
are internally clamped to signal ground 
and to 3.3V clamping voltage. So when 
connecting sources with a higher level 
than the clamping voltage plus the for-
ward voltage of typically 0.6..0.7 V will 
be the resulting maximum high-level lev-
el.

The maximum forward current limit for the used CD1005 diodes is 100 mA, which is effectively limited by the used series resistor for logic 
levels up to 5.0V. To avoid floating levels with unconnected inputs, a pull up resistor of 10 kOhm to 3.3V is used on each line.

Interfacing with clock input
The clock input of the M5i cards is AC-coupled, single-
ended PECL type. Due to the internal biasing and a rela-
tively high maximum input voltage swing, it can be direct-
ly connected to various logic standards, without the need 
for external level converters.

Single-ended LVTTL sources
All LVTTL sources, be it 2.5V LVTTL or 3.3V LVTTL must be 
terminated with a 50 Ohm series resistor to avoid reflec-
tions and limit the maximum swing for the M5i card.

Differential (LV)PECL sources
Differential drivers require equal load on both the true 
and the inverting outputs. Therefore the inverting output 
should be loaded as shown in the drawing. All PECL driv-
ers require a proper DC path to ground, therefore emitter 
resistors RE must be used, whose value depends on the 
supply voltage of the driving PECL buffer:

Interfacing with clock output
The clock output of the M5i cards is AC-coupled, sin-
gle-ended PECL type. The output swing of the M5i 
clock output is approximately 720 mVPP.

Internal biased single-ended receivers
Because of the AC coupling of the M5i clock output, 
the signal must be properly re-biased for the receiv-
er. Receivers that provide an internal re-bias only re-
quire the signal to be terminated to ground by a 
50 Ohm resistor.

Differential (LV)PECL receivers
Differential receivers require proper re-biasing and 
likely a small minimum difference between the true 
and the inverting input to avoid ringing with open re-
ceiver inputs. Therefore a Thevenin-equivalent can 
be used, with receiver-type dependent values
for R1, R2, R1’ and R2’.

VCC - VEE 2.5 V 3.3 V 5.0 V

RE ~50 Ohm ~100 Ohm ~200 Ohm

Image 82: electrical structure of multi-purpose I/O lines

Image 83: electrical structure of clock inputs and potential interfacing circuits

Image 84: electrical structure of clock outputs and potential interfacing circuits



Details on M5i cards status LED

(c) Spectrum Instrumentation GmbH 163

Details on M5i cards status LED
Every M5i card has a two-colour status LED mounted within the multi-purpose I/O connector field on 
the card bracket.

This chapter explains the different colour codes and offers some possible solutions in case of an error 
condition.

Turning on card identification LED
To enable/disable the cards LED indicator mode or to read out the current setting, please use the following register:

The default for the card identification register is the OFF state.

 

Table 143: card status LED colour and blink coding

Condition LED colour Status Solution

Off Off Card not powered Power on the PC.

Error

Static: red Power supply error or missing 
12V PCIe power cable

Make sure that the 12V power cable is connected. If it is, restart the PC. In case that the error 
persists, please contact Spectrum support for further assistance.

LED off FPGA boot error  Power down the PC and restart the system.
In case that this error is occurring after a firmware update please contact Spectrum support for 
assistance on how to boot the card’s golden recovery image.

Single yellow pulses 
with 8 Hz repetition rate

PCI Express link training has  
not finished

Power down the PC, un-plug and re-plug the card to verify that there is a proper contact 
between the card and the slot.
Try another PCI Express slot, maybe the currently used one is not properly working.
In case that the above steps did not help, please contact Spectrum support for assistance.

4 Yellow pulses 
with 8 Hz repetition rate

PCIe Express is Linked-up but 
PCIe error

Power down the PC, un-plug and re-plug the card to verify that there is a proper contact 
between the card and the slot.
Try another PCI Express slot, maybe the currently used one is not properly working.
In case that the above steps did not help, please contact Spectrum support for assistance.

O.K.

Static: green Card is ready for operation
(at full PCIe speed)

A full speed PCIe link has been established (PCIe x16, Gen 3) and the card is ready for opera-
tion.

Slow blinking (approx. 1 Hz):
green - off - green - off ...

Indicator mode on
(at full PCIe speed)

To ease the identification of a specific card in a multi-card system without un-installing the card 
it is possible to activate the card identification status by software. This mode changes the static 
„Ready for Operation“ green into a blinking state. 

Static: yellow Card is ready for operation
(at reduced PCIe speed)

A reduced speed PCIe link has been established either with less than all of the possible 16 
lanes and/or the card is installed in a PCIe Gen 1 or Gen 2 slot. The card is ready for opera-
tion, but the data transfer throughput over the PCI Express bus is reduced.
For getting the highest PCIe performance please consult your PC’s or motherboard’s manual for 
details on the PCI Express slots of your system.

Slow blinking (aprox. 1 Hz):
yellow - off - yellow - off ...

Indicator mode on
(at reduced PCIe speed)

To ease the identification of a specific card in a multi-card system without un-installing the card 
it is possible to activate the card identification status by software. This mode changes the static 
„Ready for Operation“ yellow into a blinking state. 

Table 144: Spectrum API: card identification LED register

Register Value Direction Description

SPC_CARDIDENTIFICATION 201500 read/write Writing a ’1’ turns on the LED card indicator mode, writing a ’0’ turns off the LED indicator mode.

Image 85: location of status LED on front pan-
el



Continuous memory for increased data transfer rate

(c) Spectrum Instrumentation GmbH 164

Continuous memory for increased data transfer rate

The continuous memory buffer has been added to the driver version 1.36. The continuous buffer is not avail-
able in older driver versions. Please update to the latest driver if you wish to use this function.

Background
All modern operating systems use a very complex memory management strategy that strictly separates between physical memory, kernel mem-
ory and user memory. The memory management is based on memory pages (normally 4 kByte = 4096 Bytes). All software only sees virtual 
memory that is translated into physical memory addresses by a memory management unit based on the mentioned pages.

This will lead to the circumstance that although a user program allocated a larger memory block (as an example 1 MByte) and it sees the 
whole 1 MByte as a virtually continuous memory area this memory is physically located as spread 4 kByte pages all over the physical memory. 
No problem for the user program as the memory management unit will simply translate the virtual continuous addresses to the physically 
spread pages totally transparent for the user program.

When using this virtual memory for a DMA transfer things become more complicated. The DMA engine of any hardware can only access 
physical addresses. As a result the DMA engine has to access each 4 kByte page separately. This is done through the Scatter-Gather list. This 
list is simply a linked list of the physical page addresses which represent the user buffer. All translation and set-up of the Scatter-Gather list is 
done inside the driver without being seen by the user. Although the Scatter-Gather DMA transfer is an advanced and powerful technology it 
has one disadvantage: For each transferred memory page of data it is necessary to also load one Scatter-Gather entry (which is 16 bytes on 
32 bit systems and 32 bytes on 64 bit systems). The little overhead to transfer (16/32 bytes in relation to 4096 bytes, being less than one 
percent) isn’t critical but the fact that the continuous data transfer on the bus is broken up every 4096 bytes and some different addresses 
have to be accessed slow things down.

The solution is very simple: everything works faster if the user buffer is not only virtually continuous but also physically continuous. Unfortu-
nately it is not possible to get a physically continuous buffer for a user program. Therefore the kernel driver has to do the job and the user 
program simply has to read out the address and the length of this continuous buffer. This is done with the function spcm_dwGetContBuf as 
already mentioned in the general driver description. The desired length of the continuous buffer has to be programmed to the kernel driver 
for load time and is done different on the different operating systems. Please see the following chapters for more details.

Next we’ll see some measuring results of the data transfer rate with/without continuous buffer. You will find more results on different mother-
boards and systems in the application note number 6 „Bus Transfer Speed Details“. Also with newer M5i/M4i/M4x/M2p cards the gain in 
speed is not as impressive, as it is for older cards, but can be useful in certain applications and settings. As this is also system dependent, 
your improvements may vary. This can not only depending on the system hardware but also on the used operating system, as in some cases 
Linux does seem to benefit more than Windows for newer cards.



Continuous memory for increased data transfer rate

(c) Spectrum Instrumentation GmbH 165

Bus Transfer Speed Details (M2i/M3i cards in an example system)

Bus Transfer Standard Read/Write Transfer Speed Details (M4i.44xx card in an example system)

Bus Transfer FIFO Read Transfer Speed Details (M4i.44xx card in an example system)

Bus Transfer FIFO Read Transfer Speed Details (M2p.5942 card in an example system)

Setup on Linux systems
On Linux systems the continuous buffer setting is done via the command line argument contmem_mb when loading the kernel driver module:

As memory allocation is organized completely different compared to Windows the amount of data that is available for a continuous DMA 
buffer is unfortunately limited to a maximum of 8 MByte. On most systems it will even be only 4 MBytes.

To use a larger continuous buffer you can use the Continuous Memory Allocator (CMA). To allocate continuous memory this way you pass 
„cma=xyz“ as kernel boot parameter, with xyz being the size of the continuous memory, e.g. „cma=128M“ for 128 MByte.

Your kernel needs to have CMA support enabled to use this.
You can check this with „grep CONFIG_CMA /boot/config-$(uname -r)“.

To enable CMA in our spcm4 kernel driver module edit the Makefile for the kernel driver module and uncomment the line #EXTRA_CFLAGS 
+= -DSPCM4_USE_CMA by removing the # in front. Then recompile the kernel module and load it as described above, like so as example:.

Using a continuous buffer of this size will need root privileges for the using program on most systems!

PCI 33 MHz slot PCI-X 66 MHz slot PCI Express x1 slot
Mode read write read write read write
User buffer 109 MB/s 107 MB/s 195 MB/s 190 MB/s 130 MB/s 138 MB/s
Continuous kernel buffer 125 MB/s 122 MB/s 248 MB/s 238 MB/s 160 MB/s 170 MB/s
Speed advantage 15% 14% 27% 25% 24% 23%

Notifysize
16 kByte

Notifysize
64 kByte

Notifysize
512 kByte

Notifysize
2048 kByte

Notifysize
4096 kByte

Mode read write read write read write read write read write
User buffer 243 MB/s 132 MB/s 793 MB/s 464 MB/s 2271 MB/s 1352 MB/s 2007 MB/s 1900 MB/s 2687 MB/s 2284 MB/s
Continuous kernel buffer 239 MB/s 133 MB/s 788 MB/s 457 MB/s 2270 MB/s 1470 MB/s 2555 MB/s 2121 MB/s 2989 MB/s 2549 MB/s
Speed advantage --1.6% +0.7% -0.6% -1.5% 0% +8.7% +27.3% +11.6% +11.2% +11.6%

Notifysize
4 kByte

Notifysize
8 kByte

Notifysize
16 kByte

Notifysize
32 kByte

Notifysize
64 kByte

Notifysize
256 kByte

Notifysize
1024 kByte

Notifysize
2048 kByte

Notifysize
4096 kByte

Mode FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read
User buffer 455 MB/s 858 MB/s 1794 MB/s 2005 MB/s 3335 MB/s 3386 MB/s 3369 MB/s 3331 MB/s 3335 MB/s
Continuous kernel buffer 540 MB/s 833 MB/s 1767 MB/s 1965 MB/s 3216 MB/s 3386 MB/s 3389 MB/s 3388 MB/s 3389 MB/s
Speed advantage +18.6% --2.9% --1.5% --2.0% --3.5% 0% +0.6% +1.7% +1.6%

Notifysize
4 kByte

Notifysize
8 kByte

Notifysize
16 kByte

Notifysize
32 kByte

Notifysize
64 kByte

Notifysize
256 kByte

Notifysize
1024 kByte

Notifysize
2048 kByte

Notifysize
4096 kByte

Mode FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read FIFO read
User buffer 282 MB/s 462 MB/s 597 MB/s 800 MB/s 800 MB/s 799 MB/s 799 MB/s 799 MB/s 797 MB/s
Continuous kernel buffer 279 MB/s 590 MB/s 577 MB/s 800 MB/s 800 MB/s 800 MB/s 800 MB/s 800 MB/s 799 MB/s
Speed advantage -1.1% +27.7% --3.4% +0.0% +0.0% 0% +0.1% +0.1% +0.3%

insmod spcm.ko contmem_mb=4

insmod spcm4.ko contmem_mb=128



Continuous memory for increased data transfer rate

(c) Spectrum Instrumentation GmbH 166

Setup on Windows systems
The continuous buffer settings is done with the Spectrum Control Center us-
ing a setup located on the „Support“ page. Please fill in the desired con-
tinuous buffer settings as MByte. After setting up the value the system needs 
to be restarted as the allocation of the buffer is done during system boot 
time.

If the system cannot allocate the amount of memory it will divide the de-
sired memory by two and try again. This will continue until the system can 
allocate a continuous buffer. Please note that this try and error routine will 
need several seconds for each failed allocation try during boot up proce-
dure. During these tries the system will look like being crashed. It is then 
recommended to change the buffer settings to a smaller value to avoid the 
long waiting time during boot up.

Continuous buffer settings should not exceed 1/4 of system memory. Dur-
ing tests the maximum amount that could be allocated was 384 MByte of 
continuous buffer on a system with 4 GByte memory installed.

Usage of the buffer
The usage of the continuous memory is very simple. It is just necessary to read the start address of the continuous memory from the driver and 
use this address instead of a self allocated user buffer for data transfer. 

Function spcm_dwGetContBuf
This function reads out the internal continuous memory buffer (in bytes) if one has been allocated. If no buffer has been allocated the function 
returns a size of zero and a NULL pointer.

Please note that it is not possible to free the continuous memory for the user application. 

Example
The following example shows a simple standard single mode data acquisition setup (for a card with 12/14/16 bit per resolution one sample 
equals 2 bytes) with the read out of data afterwards. To keep this example simple there is no error checking implemented.

uint32 _stdcall spcm_dwGetContBuf_i64 ( // Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to read as listed above under SPCM_BUF_XXXX
    void**      ppvDataBuffer,          // address of available data buffer
    uint64*     pqwContBufLen);         // length of available continuous buffer

uint32 _stdcall spcm_dwGetContBuf_i64m (// Return value is an error code
    drv_handle  hDevice,                // handle to an already opened device
    uint32      dwBufType,              // type of the buffer to read as listed above under SPCM_BUF_XXXX
    void**      ppvDataBuffer,          // address of available data buffer
    uint32*     pdwContBufLenH,         // high part of length of available continuous buffer
    uint32*     pdwContBufLenL);        // low part of length of available continuous buffer

int32 lMemsize = 16384;                                                // recording length is set to 16 kSamples

spcm_dwSetParam_i64 (hDrv, SPC_CHENABLE, CHANNEL0);                    // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE);          // set the standard single recording mode
spcm_dwSetParam_i64 (hDrv, SPC_MEMSIZE, lMemsize);                     // recording length in samples
spcm_dwSetParam_i64 (hDrv, SPC_POSTTRIGGER, 8192);                     // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_CARD_WAITREADY);

// we now try to use a continuous buffer for data transfer or allocate our own buffer in case there’s none
spcm_dwGetContBuf_i64 (hDrv, SPCM_BUF_DATA, &pvData, &qwContBufLen);
if (qwContBufLen < (2 * lMemsize))
    pvData = pvAllocMemPageAligned (lMemsize * 2); // assuming 2 bytes per sample

// read out the data
spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_DATA,  SPCM_DIR_CARDTOPC , 0, pvData, 0, 2 * lMemsize);
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_DATA_STARTDMA | M2CMD_DATA_WAITDMA);

// ... Use the data here for analysis/calculation/storage

// delete our own buffer in case we have created one
if (qwContBufLen < (2 * lMemsize))
    vFreeMemPageAligned (pvData, lMemsize * 2);

Image 86: setting up continuous memory buffer in Spectrum Control Center 



Continuous memory for increased data transfer rate

(c) Spectrum Instrumentation GmbH 167

 



List of Figures

(c) Spectrum Instrumentation GmbH 168

List of Figures
Image 1: Connector location for 1 channel cards.........................................................................................................................  14
Image 2: Connector location for 2 channel cards.........................................................................................................................  14
Image 3: M5i card showing mounted star-hub and the card’s sync bus connector ............................................................................  15
Image 4: M4i card backside showing type plate location and content............................................................................................  16
Image 5: M5i.33xx series block diagram ...................................................................................................................................  17
Image 6: Mounting M5i PCIe card into connector ........................................................................................................................  28
Image 7: M5i card location of the PCIe retention hook .................................................................................................................  29
Image 8: M5i card mandatory power connection usage ...............................................................................................................  29
Image 9: Two M5i cards with Star-Hub installed and the connecting cables ....................................................................................  30
Image 10: M5i card showing mounted star-hub and the card’s sync bus connector ..........................................................................  30
Image 11: Synchronisation connectors with  marker on connector latch ..........................................................................................  30
Image 12: Windows Device Manager showing a new Spectrum card ............................................................................................  32
Image 13: Spectrum Driver Installer Welcome Screen...................................................................................................................  32
Image 14: Spectrum Driver Installer - Progress .............................................................................................................................  33
Image 15: Spectrum Driver Installer - finished ..............................................................................................................................  33
Image 16: Windows Device Manager showing properly installed Spectrum card ............................................................................  33
Image 17: Device Manager showing a new Spectrum card ..........................................................................................................  37
Image 18: Spectrum Kernel Driver, API Library and Software structure............................................................................................  39
Image 19: Spectrum Control Center Installer................................................................................................................................  39
Image 20: Spectrum Control Center showing detail card information .............................................................................................  40
Image 21: Spectrum Control Center - entering an IP address for a NETBOX ....................................................................................  40
Image 22: Spectrum Control Center: wake on LAN for a cached card............................................................................................  40
Image 23: Netbox Monitor activation.........................................................................................................................................  41
Image 24: Spectrum Control Center: detailed hardware information on installed card .....................................................................  42
Image 25: Spectrum Control Center - showing firmware information of an installed card ..................................................................  42
Image 26: Spectrum Control Center - showing firmware information of an installed card ..................................................................  43
Image 27: Spectrum Control Center - showing driver information details.........................................................................................  43
Image 28: Spectrum Control Center - adding a demo card to the sysstem .......................................................................................  44
Image 29: Spectrum Control Center - feature update, code entry ...................................................................................................  44
Image 30: Spectrum Control Center - software license installe .......................................................................................................  44
Image 31: Spectrum Control Center - running an on-board calibration............................................................................................  44
Image 32: Spectrum Control Center - performing memory test .......................................................................................................  45
Image 33: Spectrum Control Center - running a transfer speed test of one card ...............................................................................  45
Image 34: Spectrum Control Center - activate debug logging for support cases ...............................................................................  45
Image 35: Spectrum Control Center - using device mapping .........................................................................................................  46
Image 36: Spectrum Control Center - doing a firmware update for one device ................................................................................  46
Image 37: SBench 6 overview of main functionality with demo data ..............................................................................................  47
Image 38: Structure of the Delphi exmaples ................................................................................................................................  56
Image 39: LabVIEW driver oscilloscope example.........................................................................................................................  63
Image 40: Spectrum MATLAB driver structure ..............................................................................................................................  63
Image 41: GPU usage with SCAPP SDK: data transfer options ......................................................................................................  64
Image 42: complete input stage.................................................................................................................................................  75
Image 43: input stage showing the gain amplifier........................................................................................................................  75
Image 44: Spectrum API: using the input offset shifting to optimize the usage of the input range ........................................................  76
Image 45: Spectrum API: effects of different input offset setting ......................................................................................................  76
Image 46: Spectrum API: input offset registers and available register settingss .................................................................................  76
Image 47: Acquisition cards: graphical overview of acquisition status and card command interaction................................................  81
Image 48: Generation cards: graphical overview of generation status and card command interaction ...............................................  81
Image 49: standard acquisition mode and  pretrigger/posttrigger/trigger relation ..........................................................................  84
Image 50: Overview of buffer handling for DMA transfers showing and the interaction with the DMA engine .....................................  87
Image 51: M5i clock section overview........................................................................................................................................  92
Image 52: M5i card trigger engine overview with the different trigger sources and trigger outputs.....................................................  96
Image 53: Trigger overview - trigger OR mask ............................................................................................................................  97
Image 54: trigger OR mask details.............................................................................................................................................  97
Image 55: Trigger overview - trigger AND mask..........................................................................................................................  98
Image 56: trigger AND mask details ..........................................................................................................................................  98
Image 57: trigger engine overview with marked trigger delay stage ............................................................................................  100
Image 58: trigger engine overview and external trigger .............................................................................................................  102
Image 59: trigger engine overview and multi purpose trigger......................................................................................................  105
Image 60: trigger engine overview and channel trigger..............................................................................................................  108
Image 61: trigger overview with multi-purpose lines marked........................................................................................................  116
Image 62: Drawing of Multiple Recording acquisition ................................................................................................................  120
Image 63: drawing of Multiple Recording Acquisition with Timestamps ........................................................................................  121
Image 64: drawing of timestamp acquisition in standard mode in relation to card start and trigger detection ....................................  128
Image 65: drawing of timestamp acquisition in start-reset mode in relation to card start and trigger detection ...................................  128
Image 66: drawing of timestamp acquisition in refclock mode in relation to card start and trigger detection .....................................  129
Image 67: Overview of acquisition data, ABA data and timestamp data DMA transfer ..................................................................  130
Image 68: drawing of Multiple Recording Acquisition with Timestamps ........................................................................................  135
Image 69: overview block diagram of multi-purpose I/O lines and pulse generators ......................................................................  136
Image 70: overview block diagram of the pulse generator ..........................................................................................................  137



List of Figures

(c) Spectrum Instrumentation GmbH 169

Image 71: timing diagram illustrating the basic pulse parameters ................................................................................................  138
Image 72: timing diagram illustrating delaying a pulse generator output ......................................................................................  139
Image 73: timing diagram illustrating the pulse generator triggered output mode...........................................................................  140
Image 74: timing diagram illustrating the pulse generator single-shot triggered output mode ...........................................................  140
Image 75: timing diagram illustrating the pulse generator gated output mode ...............................................................................  140
Image 76: Overview of remote server option interaction in comparison to NETBOX devices............................................................  149
Image 77: Windows screenshot: finding a remote Spectrum device like digitizerNETBOX ..............................................................  150
Image 78: block average FPGA option - block diagram..............................................................................................................  152
Image 79: block average FPGA option - principle of operation....................................................................................................  152
Image 80: timing diagram of block average acquisition .............................................................................................................  153
Image 81: visualization of the effects of threshold defined averaging (example for positive pulses) ..................................................  155
Image 82: electrical structure of multi-purpose I/O lines..............................................................................................................  162
Image 83: electrical structure of clock inputs and potential interfacing circuits................................................................................  162
Image 84: electrical structure of clock outputs and potential interfacing circuits ..............................................................................  162
Image 85: location of status LED on front panel .........................................................................................................................  163
Image 86: setting up continuous memory buffer in Spectrum Control Center ..................................................................................  166



List of Tables

(c) Spectrum Instrumentation GmbH 170

List of Tables
Table 1: Symbols and Safety Labels .............................................................................................................................................  9
Table 2: Packing List.................................................................................................................................................................  12
Table 3: list of C/C++ header files in driver ................................................................................................................................  47
Table 4: C/C++ type declarations for drivers and examples .........................................................................................................  49
Table 5: C/C++ type naming convention throughout drivers and examples.....................................................................................  49
Table 6: Spectrum driver API functions overview and differentiation between 32 bit and 64 bit registers ............................................  52
Table 7: Spectrum API: Command register and basic commands ...................................................................................................  65
Table 8: Spectrum API: Card Type Register .................................................................................................................................  68
Table 9: available models and decimal and hexadecimal value of model .......................................................................................  68
Table 10: Spectrum API: hardware and PCB version register overview ...........................................................................................  68
Table 11: Spectrum API: extension module hardware and PCB version register ...............................................................................  68
Table 12: Spectrum API: register for reading back the PXIe card slot number...................................................................................  69
Table 13: Spectrum API: Register overview of firmware versions ....................................................................................................  69
Table 14: Spectrum API: Register overview of reading current firmware..........................................................................................  69
Table 15: Spectrum API: production date register.........................................................................................................................  69
Table 16: Spectrum API: calibration date register.........................................................................................................................  70
Table 17: Spectrum API: hardware serial number register .............................................................................................................  70
Table 18: Spectrum API: maximum sampling rate register .............................................................................................................  70
Table 19: Spectrum API: installed memory registers. 32 bit read is limited to a maximum of 1 GByte .................................................  70
Table 20: Spectrum API: Feature Register and available feature flags .............................................................................................  70
Table 21: Spectrum API: Extended feature register and available extended feature flags ..................................................................  71
Table 22: Spectrum API: register overview of miscellaneous cards information.................................................................................  71
Table 23: Spectrum API: register card function type and possible types ..........................................................................................  72
Table 24: Spectrum API: register driver type information and possible driver types...........................................................................  72
Table 25: Spectrum API: driver version read register ....................................................................................................................  72
Table 26: Spectrum API: kernel driver version read register...........................................................................................................  72
Table 27: Spectrum API: custom modification register and different bitmasks to split the register in various hardware parts ...................  73
Table 28: Spectrum API: command register and reset command ....................................................................................................  73
Table 29: Spectrum API: registers for reading the installed input ranges from card EEPROM .............................................................  75
Table 30: Spectrum API: input range settings register and available vales depending on installed low-voltage option...........................  75
Table 31: Spectrum API: register to read the analog input features and the meaning of the feature flags.............................................  76
Table 32: Spectrum API: automatic offset compensation register and valid register settings ...............................................................  77
Table 33: Spectrum API: loading and storing calibration values to the EEPROM ..............................................................................  77
Table 34: Spectrum API: card mode and read out of available card mode software registers ............................................................  78
Table 35: Spectrum API: possible values for the card mode register. Description of the different card modes.......................................  79
Table 36: Spectrum API: card command register and different commands with descriptions ..............................................................  79
Table 37: Spectrum API: timeout definition register.......................................................................................................................  80
Table 38: Spectrum API: card status register and possible status values with descriptions of the status ................................................  80
Table 39: Spectrum API: memory test register ..............................................................................................................................  83
Table 40: Spectrum API: Command register and commands for DMA transfers................................................................................  83
Table 41: Spectrum API: status register and status codes for DMA data transfer...............................................................................  83
Table 42: Spectrum API: card mode register and standard single mode setup .................................................................................  84
Table 43: Spectrum API: memory size and posttrigger registers for standard single mode .................................................................  84
Table 44: Spectrum API: card mode register and standard FIFO mode setup...................................................................................  85
Table 45: Spectrum API: setup registers for standard FIFO mode ...................................................................................................  85
Table 46: Spectrum API: Limits of pre trigger, post trigger and memory size....................................................................................  86
Table 47: Spectrum-API: maximum memory sizes for different memory upgrade options ...................................................................  86
Table 48: Spectrum API: registers for DMA buffer handling...........................................................................................................  87
Table 49: Spectrum API: content of DMA buffer handling registers for different use cases .................................................................  87
Table 50: M5i cards data organization ......................................................................................................................................  90
Table 51: data sample format in standard mode and with digital inputs enable...............................................................................  91
Table 52: Spectrum API: clock mode register and available clock modes ........................................................................................  92
Table 53: Spectrum API: clock mode register and internal clock mode............................................................................................  93
Table 54: Spectrum API: samplerate register ...............................................................................................................................  93
Table 55: Spectrum API: clock output and clock output frequency register .......................................................................................  93
Table 56: Spectrum API: maximum internal sampling rate depending on channel selection and model ...............................................  93
Table 57: Spectrum API: clock oversampling readout register ........................................................................................................  94
Table 58: Spectrum API: clock mode register and external reference clock setup..............................................................................  94
Table 59: Spectrum API: reference clock register and available settings..........................................................................................  94
Table 60: Spectrum API: clock output and clock output frequency register .......................................................................................  95
Table 61: Spectrum API: external trigger OR mask related software register and available settings ....................................................  97
Table 62: Spectrum API: channel trigger OR mask related software register and available settings ....................................................  98
Table 63: Spectrum API: external trigger AND mask related software register and available settings..................................................  99
Table 64: Spectrum API: channel trigger AND mask related software register and available settings..................................................  99
Table 65: Spectrum API: software register and register setting for software trigger ...........................................................................  99
Table 66: Spectrum API: command register and force trigger command .......................................................................................  100
Table 67: Spectrum API: command register and trigger enable/disable command.........................................................................  100
Table 68: Spectrum API: trigger delay registers and available settings..........................................................................................  100
Table 69: Spectrum API: trigger holdoff related registers and settings for these ..............................................................................  101
Table 70: Spectrum API: trigger counter register and register return values....................................................................................  101



List of Tables

(c) Spectrum Instrumentation GmbH 171

Table 71: Spectrum API: external trigger mode registers and available settings therefore ................................................................  102
Table 72: Spectrum API: trigger or mask and setup for external trigger.........................................................................................  102
Table 73: Spectrum API: software registers for external trigger levels............................................................................................  102
Table 74: Spectrum API: software registers to program external trigger ........................................................................................  103
Table 75: Spectrum API: external logic trigger registers and settings for them ................................................................................  105
Table 76: Spectrum API: trigger OR mask register an settings for external logic trigger ...................................................................  105
Table 77: Spectrum API: channel trigger OR mask register..........................................................................................................  108
Table 78: Spectrum API: channel trigger register and available settings for these ...........................................................................  108
Table 79: Spectrum API: channel trigger level registers ...............................................................................................................  109
Table 80: Spectrum API: standard input ranges and representation of trigger level settings in voltage...............................................  109
Table 81: Spectrum API: trigger level count register....................................................................................................................  110
Table 82: Spectrum API: channel trigger OR mask register..........................................................................................................  111
Table 83: Spectrum API: multi-purpose I/O lines registers and available register settings ................................................................  116
Table 84: Spectrum API: asynchronous I/O register settings of the multi-purpose I/O registers ........................................................  117
Table 85: Spectrum API: additional trigger output register for compatibility with older hardware .....................................................  117
Table 86: Spectrum API: digital input options registers................................................................................................................  118
Table 87: data sample format in standard mode and with digital inputs enable.............................................................................  118
Table 88: Spectrum API: software registers for Multiple Recording mode setup ..............................................................................  120
Table 89: Spectrum API: card mode register and multiple recording settings .................................................................................  120
Table 90: Spectrum API: memory and loop registers with related multiple recording settings ...........................................................  120
Table 91: Spectrum API: card mode register and multiple replay FIFO mode settings......................................................................  120
Table 92: Spectrum API: loops register settings when using Multiple Replay FIFO mode..................................................................  121
Table 93: Spectrum API: Limits of pre trigger, post trigger and memory size..................................................................................  121
Table 94: Spectrum-API: maximum memory sizes for different memory upgrade options .................................................................  121
Table 95: Spectrum API: 8 bit storage mode acquisition mode registers........................................................................................  124
Table 96: Spectrum API: data conversion registers and register settings ........................................................................................  124
Table 97: Spectrum API: sample format for different cards with data conversion mode activated .....................................................  125
Table 98: Spectrum API: Limits of pre trigger, post trigger and memory size when using 8 bit mode ................................................  125
Table 99: Spectrum-API: maximum memory sizes for different memory upgrade options when using 8 bit mode ................................  125
Table 100: Spectrum API: timestamp related register and available timestamp commands ..............................................................  127
Table 101: Spectrum API: timestamp commands for standard mode.............................................................................................  128
Table 102: Spectrum API: timestamp commands for star-reset mode .............................................................................................  129
Table 103: Spectrum API: timestamp commands for refclock mode ..............................................................................................  129
Table 104: Spectrum API: extra DMA commands (ABA and Timestamp) .......................................................................................  130
Table 105: Spectrum APUI: extra DMA status (ABA and Timestamp)............................................................................................  131
Table 106: Spectrum API: ABA and Timestamp DMA buffer handling registers ..............................................................................  131
Table 107: timestamp data format depending on the selected timestamp acquisition mode .............................................................  133
Table 108: extended timestamp data format depending on the selected timestamp acquisition mode ...............................................  134
Table 109: timestamp extended data word format depending on the selected acquisition features ...................................................  134
Table 110: Spectrum API: timestamp command register and settings for different timestamp data formats .........................................  134
Table 111: Spectrum API: pulse generator clock frequency read register ......................................................................................  137
Table 112: Spectrum API: pulse generator enable registers .........................................................................................................  138
Table 113: Spectrum API: pulse generator length/period register ................................................................................................  138
Table 114: Spectrum API: pulse generator HIGH time registers....................................................................................................  138
Table 115: Spectrum API: pulse generator loops/pulse repetition registers ....................................................................................  139
Table 116: Spectrum API: pulse generator delay/phase shift registers ..........................................................................................  139
Table 117: Spectrum API: pulse generator mode registers with their available settings....................................................................  139
Table 118: Spectrum API: pulse generator trigger MUX1 registers with their available settings ........................................................  140
Table 119: Spectrum API: pulse generator trigger MUX2 registers with their available settings ........................................................  141
Table 120: Spectrum API: pulse generator command register for trigger forcing by software ...........................................................  141
Table 121: Spectrum API: pulse generator additional configuration registers with the available settings............................................  141
Table 122: Spectrum API: XIO lines and mode software registers with their reduced to the settings required for outputting pulses ........  142
Table 123: star-hub clock overview diagram .............................................................................................................................  144
Table 124: Spectrum API: star-hub related registers for reading detected connections.....................................................................  145
Table 125: Spectrum API: synchronization enable mask register ..................................................................................................  146
Table 126: Spectrum API: star-hub synchronization commands ....................................................................................................  147
Table 127: Spectrum API: software registers and register settings for programming the block average mode ....................................  153
Table 128: Spectrum API: card mode registers and register settings for standard block average mode .............................................  153
Table 129: Spectrum API: card mode registers and register settings for FIFO block average mode...................................................  153
Table 130: Spectrum API: block average mode loop register and register settings .........................................................................  154
Table 131: Spectrum API: Limits of pre trigger, post trigger, memory size, averages and loops for block averaging...........................  154
Table 132: Spectrum-API: maximum memory sizes for different memory upgrade options ...............................................................  154
Table 133: Spectrum API: block average mode registers for controlling accumulation (normal or threshold defined averaging TDA) ....  154
Table 134: Spectrum API: TDA - threshold level registers.............................................................................................................  155
Table 135: Spectrum API: TDA - replacement value registers .......................................................................................................  155
Table 136: Spectrum API: block average mode output sample format...........................................................................................  156
Table 137: Spectrum API: block average mode data organization...............................................................................................  156
Table 138: Spectrum API: driver error codes and error description ..............................................................................................  158
Table 139: Spectrum API: base card read-out registers of internal temperature sensors ...................................................................  160
Table 140: Spectrum API: front-end module read-out registers of internal temperature sensors .........................................................  160
Table 141: Spectrum API: base card read-out registers of the fan speed sensors ............................................................................  160
Table 142: Spectrum API: temperature limits .............................................................................................................................  161



List of Tables

(c) Spectrum Instrumentation GmbH 172

Table 143: card status LED colour and blink coding ...................................................................................................................  163
Table 144: Spectrum API: card identification LED register ...........................................................................................................  163




	Table of Contents
	Safety Instructions
	Symbols and Safety Labels
	General safety information
	Requirements for users and duties for operators
	General safety at work

	Bringing the product into service
	Intended use
	Application area of the product
	Requirements for the technical state of the product
	Requirements for operation
	Electrical safety and power supply
	Requirements for the location
	Requirements on the ventilation
	Maintenance
	Repair/Service
	Cleaning the module housing (NETBOX devices, cables, amplifiers, systems only)
	Opening the module (NETBOX devices, amplifiers only)
	Dismounting parts of the card (instrument card only)

	Markings and Labelling

	Packing list
	Introduction
	Preface
	Overview
	General Information
	Different models of the M5i.33xx series
	Additional options
	Star-Hub

	The Spectrum type plate
	Hardware information
	Block Diagrams
	Technical Data
	Frequency Response Plots
	Dynamic Parameters 10.0 GS/s 4.7 GHz models
	Dynamic Parameters 10.0 GS/s 3.0 GHz models
	Dynamic Parameters 6.4 GS/s models
	Dynamic Parameters 3.2 GS/s models
	RMS Noise Level (Zero Noise)

	M5i.33xx Order Information

	Hardware Installation
	ESD Precautions
	Sources of noise
	Cooling Precautions
	Connector Handling Precautions
	M5i PCIe Cards
	System Requirements
	Installing the M5i board in the system
	Additional notes on PCIe x16 slot retention
	Providing additional power to M5i.xxxx-x16 cards
	Installing multiple boards synchronized by Star-Hub option
	Shipment of systems with Spectrum cards installed


	Software Driver Installation and Driver Update
	Windows
	Before initial installation
	Running the driver Installer/Update
	After installation

	Linux
	Overview
	Driver Installation with Installation Script
	Standard Driver Update
	Compilation of kernel driver sources (optional and local cards only)
	Update of a self compiled kernel driver
	Installing the library only without a kernel (for remote devices)
	Installation from Spectrum Repository
	Control Center


	Software
	Software Overview
	Card Control Center
	Discovery of Remote Cards, digitizerNETBOX/generatorNETBOX/hybridNETBOX products
	Wake On LAN of digitizerNETBOX/generatorNETBOX/hybridNETBOX
	Netbox Monitor
	Device identification
	Hardware information
	Firmware information
	Software License information
	Driver information
	Installing and removing Demo cards
	Feature upgrade
	Software License upgrade
	Performing card calibration (A/D only)
	Performing memory test
	Transfer speed test
	Debug logging for support cases
	Device mapping
	Firmware upgrade

	Accessing the hardware with SBench 6
	C/C++ Driver Interface
	Header files
	General Information on Windows 64 bit drivers
	Microsoft Visual C++ 6.0, 2005 and newer 32 Bit
	Microsoft Visual C++ 2005 and newer 64 Bit
	Linux Gnu C/C++ 32/64 Bit
	C++ for .NET
	Other Windows C/C++ compilers 32 Bit
	Other Windows C/C++ compilers 64 Bit

	Driver functions
	Delphi (Pascal) Programming Interface
	Driver interface
	Examples

	.NET programming languages
	Library
	Declaration
	Using C#
	Using Managed C++/CLI
	Using VB.NET
	Using J#

	Python Programming Interface and Examples
	Driver interface
	Examples

	Java Programming Interface and Examples
	Driver interface
	Examples

	Julia Programming Interface and Examples
	Driver interface
	Examples

	LabVIEW driver and examples
	MATLAB driver and examples
	SCAPP – CUDA GPU based data processing

	Programming the Board
	Overview
	Register tables
	Programming examples
	Initialization
	Initialization of Remote Products
	Error handling
	Gathering information from the card
	Card type
	Hardware and PCB version
	Reading currently used PXI slot No. (M4x only)
	Firmware versions
	Production date
	Last calibration date (analog cards only)
	Serial number
	Maximum possible sampling rate
	Installed memory
	Installed features and options
	Miscellaneous Card Information
	Function type of the card
	Used type of driver
	Custom modifications

	Reset

	Analog Inputs
	Channel Selection
	Important note on channel selection

	Setting up the inputs
	Input ranges
	Input offset
	Read out of input features
	Automatic on-board calibration of the offset and gain settings


	Acquisition modes
	Overview
	Setup of the mode

	Commands
	Card Status
	Acquisition cards status overview
	Generation card status overview
	Data Transfer

	Standard Single acquisition mode
	Card mode
	Memory, Pre- and Posttrigger
	Example

	FIFO Single acquisition mode
	Card mode
	Length and Pretrigger
	Difference to standard single acquisition mode
	Example FIFO acquisition

	Limits of pre trigger, post trigger, memory size
	Buffer handling
	Data organization
	Sample format
	Converting ADC samples to voltage values


	Clock generation
	Overview
	Clock Mode Register
	The different clock modes

	Details on the different clock modes
	Standard internal sampling clock (PLL)
	Oversampling
	External clock (reference clock)


	Trigger modes and related registers
	General Description
	Trigger Engine Overview
	Trigger masks
	Trigger OR mask
	Trigger AND mask

	Software trigger
	Force- and Enable trigger
	Trigger delay
	Trigger holdoff
	Trigger Counter

	Main analog external trigger (Ext0)
	Trigger Mode
	Trigger Input Termination
	Trigger level
	Detailed description of the external analog trigger modes

	External logic trigger (X0, X1, X2, X3)
	Trigger Mode
	Input Termination
	Detailed description of the logic trigger modes

	Channel Trigger
	Overview of the channel trigger registers
	Channel trigger level
	Detailed description of the channel trigger modes


	Multi Purpose I/O Lines
	On-board I/O lines (X0, X1, X2, X3)
	Programming the behavior
	Input Termination
	Using asynchronous I/O
	Special behavior of trigger output
	Synchronous digital inputs


	Mode Multiple Recording
	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Multiple Recording and Timestamps

	Trigger Modes
	Programming examples

	Mode 8 bit Storage (Low-Resolution)
	Overview
	Available acquisition modes
	Enabling hardware data conversion
	Sample format
	Limits of pre trigger, post trigger, memory size
	Converting reduced ADC samples to voltage values

	Timestamps
	General information
	Example for setting timestamp mode:

	Timestamp modes
	Standard mode
	StartReset mode
	Refclock mode

	Reading out the timestamps
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	Data format

	Combination of Memory Segmentation Options with Timestamps
	Multiple Recording and Timestamps


	Pulse Generator (Firmware Option)
	General Information
	Principle of Operation
	Setting up the Pulse Generator
	Enabling, disabling and resetting a pulse generator
	Defining the basic pulse parameters
	Delaying (phase shifting) the Outputs
	Defining the trigger behavior
	Configuring the pulse generator’s trigger source
	Configuring Multi Purpose lines to output generated pulses

	Programming Example

	Option Star-Hub
	Star-Hub introduction
	Star-Hub trigger engine
	Star-Hub clock engine

	Software Interface
	Star-Hub Initialization
	Setup of Synchronization
	Setup of Trigger
	Run the synchronized cards
	Error Handling


	Option Remote Server
	Introduction
	Installing and starting the Remote Server
	Windows
	Linux

	Detecting the digitizerNETBOX/generatorNETBOX/hybridNETBOX
	Discovery Function
	Finding the digitizerNETBOX/generatorNETBOX/hybridNETBOX in the network
	Troubleshooting

	Accessing remote cards

	Mode Block Average (Firmware Option)
	Overview
	General Information
	Principle of operation
	Setting up the Acquisition

	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Averaging Modes
	Standard Average Mode
	Threshold Defined Averaging (TDA)

	Clock Modes
	Trigger Modes
	Output Data Format
	Data organization
	Programming examples

	Appendix
	Error Codes
	Spectrum Knowledge Base

	Temperature and fan speed sensors
	Base Card Temperature read-out registers
	Front-end Module read-out registers
	Base Card fan speed read-out registers
	Temperature hints
	33xx temperatures and limits

	Details on M5i cards I/O lines
	Multi-Purpose I/O Lines
	Interfacing with clock input
	Interfacing with clock output

	Details on M5i cards status LED
	Turning on card identification LED

	Continuous memory for increased data transfer rate
	Background
	Setup on Linux systems
	Setup on Windows systems
	Usage of the buffer


	List of Figures
	List of Tables

