
Application Note

Signal Processing for Digitizers
Modular digitizers allow accurate, high resolution data acquisition that can be quickly 
transferred to a host computer. Signal processing functions, applied in the digitizer or in the 
host computer, permit the enhancement of the acquired data or the extraction of extremely 
useful information from a simple measurement.

Modern digitizer support software, like Spectrum’s SBench 6 and many third party programs 
incorporate many signal processing features. These include waveform arithmetic, ensemble 
and boxcar averaging, Fast Fourier Transform (FFT), advanced filtering functions and 
histograms. This application note will investigate all these functions and provide typical 
examples of common applications for these tools..

Analog Calculation (Waveform Arithmetic)

Analog calculation includes addition, subtraction, multiplication, and division of acquired 
waveforms. These functions are applied to data in order to improve signal quality or to 
derive alternative functions. One example is the use of subtraction to combine differential 
components into a differential waveform with reduced levels of common mode noise and 
pickup. Another is taking the product of current and voltage waveforms to compute 
instantaneous power. 

Each of these arithmetic 
functions is applied to 
waveforms on a sample by 
sample basis. This assumes 
that the waveforms being 
combined have the same 
record length. Figure 1 shows 
the SBench 6 setup path for 
selecting analog calculation.

Right clicking on the desired 
source channel brings up a 
selection box. Selecting 
Calculation opens additional 
choices for measurements, 
signal calculation, signal 
conversion, and averaging. A 
choice of Signal Calculations 
provides access to Fast Fourier 
Transform (FFT), histograms, 
filtering and several other functions. If Analog Calculation is chosen the Calculation dialog 
box pops up allowing the setup of the desired arithmetic operations. In this example the two 
source signals are to be added. Other choices are subtraction (SUB), multiplication (MULTI) 
and division (DIV). Similar selection paths can bring up all the other signal processing 
functions to be discussed.
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Figure 1:Signal processing selections in SBench 6 are associated with each signal.Here 
A1-Ch0 is chosen and analog calculations selected.The Calculation dialog box is setup 
to add signals A1-Ch0 and A1Ch1.
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The first example of applying 
waveform arithmetic to 
practical problems is to 
subtract one signal component 
from another to compute the 
differential signal. This is 
shown in Figure 2.

Differential signals are 
commonly used to improve 
signal integrity. In the example 
in Figure 2 the ‘P’ and ‘N’ 
components of a 1 MHz clock 
(shown in the two right hand 
panels) are combined using 
the subtraction operation. The 
resultant differential signal is 
shown in the left hand grid. 
The Info pane at the left 
center uses parameters to 
measure the peak to peak and 
average value of each waveform. Note that the differential signal has twice the peak to peak 
amplitude and a near zero mean value. Note also that the common mode noise on the 
differential components has been eliminated. 

The second example multiplies 
a voltage waveform by a 
current waveform to obtain 
the instantaneous power as 
shown in Figure 3.

The source waveforms are the 
voltage across the power field 
effect transistor (FET) and the 
FET channel current in a 
flyback mode switching power 
supply. The product of those 
waveforms represents the 
instantaneous power 
dissipated by the FET. The 
current waveform (upper right 
grid) shows a linearly 
increasing ramp during the 
FET conduction peaking at 600 
mA. The voltage across the FET is at a minimum during conduction but rises to a peak value 
of 260 V when the device is off. The product of those two waveforms is shown in the left 
grid. This is the instantaneous power waveform which shows significant peaks occur during 
the transitions between the on (conduction) and off states. The average (5.111W) and peak 
power (44.25W) are determined using parameters and appear in the info pane at the left 
center.

These examples show how the analog calculations can be used to derive other important 
waveforms from those that are initially acquired.
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Figure 2:Using the subtraction function to combine two differential components into 
a differential signal.

Figure 3: Using the multiplication function to compute instantaneous power from the 
current and voltage waveforms of a switch mode power supply.
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Averaging

Averaging is a signal processing tool used to reduce the effects of noise and non-synchronous 
periodic waveforms on acquired signals. It requires multiple acquisitions and a stable trigger. 
Signal components that are not synchronous with the trigger timing, including random 
noise, are reduced in amplitude. The degree of reduction is dependent on the waveform 
characteristics and the number of acquisitions added to the average.

Spectrum’s SBench 6 software, used in this application note, and most oscilloscopes perform 
ensemble averaging, meaning that the same sample location in multiple acquisitions are 
averaged together. If a stable trigger is available, the resulting average has a random noise 
component lower than that of a single-shot record. 

Summed Averaging

Summed Averaging uses a fixed number of acquisitions and is the repeated addition, with 
equal weight, of the same sample locations from successive waveform acquisitions. 
Whenever the maximum number of sweeps is reached, the averaging process either stops or 
is reset to begin again.

Figure 4 shows the concept of a summed ensemble average:

In Figure 4 the arrows indicate 
the nth point. The amplitude 
value of the nth point of each 
acquisition is summed with 
those of the other 
acquisitions. The sum is then 
divided by the number of 
acquisitions to determine the 
nth value of the average. This 
takes place for all sample 
points in the acquisition 
group. The resultant averaged 
waveform has the same 
number of points as each 
acquired waveform. 

Averaging is supported for 
both normal acquisition and 
for multiple (segmented) 
acquisitions. Multi averaging 
calculations permit the 
average of consecutive segments of the multiple recording acquisition.

What Improvement Can You Expect?

When a signal is averaged additive broadband Gaussian noise will be reduced by the square 
root of the number of averages. So averaging four acquisitions can improve the signal to 
noise ratio by two to one. Similarly, non-synchronous periodic signals will be reduced in the 
average. The degree of reduction depends on the phase variation of the interfering signal 
from acquisition to acquisition. Signals synchronous to the trigger, such as distortion 
products, will not be reduced in amplitude by averaging.
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Figure 4: Summed ensemble averaging adds the nth point of multiple acquisitions and 
then divides the sum by the number of acquisitions to determine the averaged value 
for the nth point.
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Example of Averaging

Figure 5 shows a typical example where 
averaging is useful. The acquired signal 
(left grid) is a linearly damped sine wave 
with additive vertical noise. Note that as 
the sine amplitude decreases in the 
presence of fixed amplitude noise it 
disappears into the noise.

Averaging 1024 acquisitions increases the 
signal to noise ratio to a point where the 
sine wave can be discerned through the 
whole waveform. 

The principle limitation of the summed 
ensemble average is that it requires 
multiple repetitive waveforms with a 
stable trigger.

Moving Average

The moving average, sometimes called a ‘boxcar’ average or smoothing, takes an average of 
a user defined number of symmetrically placed adjacent samples. For a sample size of five the 
process is defined mathematically by the following equation:

Averaged Sample = [sample (x-2) + sample (x-1) + Sample (x) +sample (x+1) + sample (x=2)] / 5

The number of samples used in the average must be matched to the period of variations in 
the waveform otherwise the moving average can reduce the amplitude of narrow features.

Figure 6 provides an example of using a 
moving average of 50 adjacent samples, 
shown in the left hand grid. Note the 
smoothing and elimination of noise 
compared to the acquired waveform 
shown in the grid on the right.

The samples are uniformly weighted and 
the average is taken running along the 
samples of the acquisition. The advantage 
to a moving average is that the signal 
need not be repetitive. The tradeoff is that 
in creating a smoothed waveform there is 
a corresponding loss of high-frequency 
information. Care must be exercised in 
setting the number of samples averaged.

Fast Fourier Transform

The Fast Fourier Transform (FFT) maps the acquired waveform from the time domain 
(amplitude versus time) into the frequency domain spectrum (amplitude versus frequency). 
This allows observation of the frequency components which make up the signal. The FFT 
does not improve signal quality directly but it shows the structure of the signal and provides 
information on how to remove undesirable spectral components.
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Figure 5: An example of using summation averaging to 
improve signal to noise ratio.With 1024 acquisitions 
averaged, the sine wave is visible above the noise.

Figure 6: An example of using a moving average using 50 
adjacent samples of the acquired signal (left hand grid) 
showing the resultant smoothing in the right hand grid.
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The frequency spectrum resulting from an FFT has a discrete time axis just as the time domain 
signal has discrete time samples. Samples in the spectrum, often referred to as bins or cells, 
are spaced by the resolution bandwidth ( f) which is inversely proportional to the acquired 
signals record length. So to increase the frequency resolution of the FFT spectrum you have 
to increase the acquired signals record length.

The frequency range or span of the spectrum display is one half of the sample rate at which 
the signal was acquired. So to increase the span you must increase the sampling rate.

Vertical scaling of the FFT in SBench 6 can be in linear units of Volts or in logarithmic units 
expressed in decibels (dB). The decibel scale can be referenced to full scale of the digitizer 
range (dBFS), one milliwatt (dBm), 1 µV (dbµV), or to the largest peak in the spectrum which 
is assumed to be the modulated carrier (dBc). 

Weighting Functions
The theoretical Fourier transform assumes that the input record is of infinite length. A finite 
record length can introduce discontinuities at its edges. This introduces pseudo-frequencies 
in the spectral domain, distorting the real spectrum. When the start and end phase of the 
signal differ, the signal frequency falls within two frequency bins, broadening the spectrum. 

The broadening of the spectral base, stretching out in many neighboring bins, is termed 
leakage. Cures for this are to ensure that an integral number of periods is contained within 
the display grid or that no discontinuities appear at the edges. Both need a very precise 
synchronization between waveform signal frequency and digitizer sampling rate and an 
exact setup of the acquisition length, what is normally only possible in lab and not with real 
world signals. Another is to use a window function (weighting) to smooth the edges of the 
signal. 

In an effort to minimize these 
effects a weighting function is 
applied to the acquired signal 
which forces the end points of 
the record to zero. The FFT in 
SBench 6 offers the user a 
choice of any of eight 
weighting functions. 
Weighting functions have the 
effect of changing the shape 
of the spectral lines. One way 
of thinking about the FFT is 
that is synthesizes a parallel 
bank of band pass filters 
spaced by the resolution 
bandwidth. The weighting 
function affects the shape of 
the filter frequency response. 
Figure 7 compares the spectral 
responses for four of the most 
commonly used weighting 
functions.

Table 1 shows the key 
characteristics of each weighting function.
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Figure 7: A comparison of the spectral shape for four most commonly used weighting 
functions including rectangular (no weighting), Hanning, Hamming, and Blackman-
Harris.
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Ideally, the main lobe should be as narrow 
and flat as possible to represent the true 
spectral components, while all side lobes 
should be infinitely attenuated. The 
window type defines the bandwidth and 
shape of the equivalent filter to be used in 
the FFT processing. The maximum side lobe 
amplitudes of the spectral response are 
shown in table 1. Minimum side lobe levels 
help discriminate between closely spaced 
spectral elements.

As mentioned previously, the FFT frequency 
axis is discrete having bins spaced in 
multiples of the resolution bandwidth. If the input signal frequency falls between two 
adjacent bins the energy is split between the bins and the peak amplitude is reduced. This is 
called ‘picket fence’ effect or scalloping. Broadening the spectral response decreases the 
amplitude variation. The scallop loss column in table 1 specifies the amplitude variation for 
each weighting function. 

Weighting functions effect the bandwidth of the spectral response. Effective noise 
bandwidth (ENBW) specifies the relative change in bandwidth relative to that of rectangular 
weighting. Normalizing the power spectrum to the measurement bandwidth (power spectral 
density) requires dividing the power spectrum by the ENBW times the resolution bandwidth 
( f*ENBW). 

Coherent Gain specifies the change in spectral amplitude for a given weighting function 
relative to rectangular weighting. This is a fixed gain over all frequencies and can be easily 
normalized.

The rectangular weighting function is the response of the acquired signal without any 
weighting at all. It has the narrowest bandwidth but exhibits rather high side lobe levels. 
Because the amplitude response is uniform over all points in the acquired time domain 
record it is used for signals that are transient in nature (are much shorter than the record 
length). It is also used when the best frequency accuracy is required.

The Hanning and Hamming weighting functions have good, general purpose responses 
providing good frequency resolution along with reasonable side lobe response. 

Blackman-Harris is intended for the best amplitude accuracy and excellent side lobe 
suppression.
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FFT Window Filter Parameters

Window Type Highest Side 

Lobe (dB)

Scallop Loss

(dB)

ENBW

(bins)

Coherent Gain

(dB)

Rectangular -13 3.92 1.0 0.0

Hanning -32 1.42 1.5 -6.02

Hamming -43 1.78 1.37 -5.35

Blackman-Harris -67 1.13 1.71 -7.53

Table 1: Characteristics of the four most commonly used 
weighting functions
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FFT Application Example

Figure 8 shows a typical example where the FFT is useful. The signal from an ultrasonic range 
finder is acquired using a broadband instrumentation microphone and a Spectrum M4i series 
14 bit digitizer.

The acquired time domain 
signal is in the left grid. The 
time domain record includes 
16,384 samples taken at a 
sample rate of 3.90625 MHz. 
Its duration is 4.2 ms. The 
resultant FFT (right grid) has 
8,192 bins spaced at a 
resolution bandwidth of 238 
Hz (the reciprocal of the 4.2 
ms record length) for a span of 
1.95 MHz (half of the 
sampling rate). The spectrum 
in the lower right is the full 
span. The zoom view in the 
upper right shows only the 
first 100 kHz, allowing a 
better view of the main 
spectral components.

The FFT allows us a better 
understanding of the elements 
that make up this signal. It is a 
transient signal whose duration is less than the acquired record length. In this case 
rectangular weighting has been used. The primary signal is the 40 kHz burst which is clearly 
the frequency component with the highest amplitude. There is an 80 kHz signal which is the 
second harmonic of the 40 kHz component. Its amplitude is about 45 dB below the 40 kHz 
signal component. There are also a lot of low frequency components between 0 Hz and 10 
kHz. The highest components, those near DC, are ambient noise found in the room where 
the device was used. 

The goal here is to be able to measure the time delay between the transmitted burst and the 
40 kHz reflection. To improve this measurement we can remove the signal frequency 
components outside of the range of the

40 kHz components. This spectral view will be our guide in setting up a filter to remove the 
unwanted frequency components.

© Spectrum GmbH, Germany 7/10

Figure 8: A 40kHz ultrasonic pulse (left)and its associated FFTs (lower right full 
spectrum, upper right zoom view) showing the principal spectral response at 40 kHz 
along with undesired lower and higher frequency components. 
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Filtering
The SBench 6 professional 
software includes finite 
impulse response (FIR) digital 
filters in low pass, band pass, 
or high pass configuration. 
Filters can be created based 
directly in SBench 6 by 
entering the desired filter 
type, cutoff frequency or 
frequencies, and filter order. 
SBench 6 advises if the filter is 
not realizable and suggests 
solutions to correct the 
problem. Alternatively, you 
can enter filter coefficients 
derived from another source. 
These filters can be applied to 
the acquired signal and we 
can compare the results with 
the raw or averaged 
acquisitions. In Figure 9 an FIR 
band pass filter with cutoff 
frequencies of 30 and 50 kHz 
has been applied to the 
acquired signal.

The upper left grid contains 
the raw waveform. Below that 
is the FFT of the raw signal which we have seen before. The upper right grid contains the 
band pass filtered waveform. The FFT of the filtered signal is in the grid on the lower right. 
Note that the band pass filter has eliminated the low frequency pickup and the 80 kHz 
second harmonic. The time domain view of the filtered signal now has a flat baseline. The 
reflections are more clearly discernible, which is the goal of the processing. Again the FFT 
provides great insight into the filtering process.

Histograms

So far we have looked at data in both the time and frequency domain. Each of these views 
adds something to our understanding of the data we are acquiring. We can also view the 
data in the statistical domain which deals with the probability that certain amplitude values 
occur. This is conveyed by the histogram which plots the frequency of occurrence versus 
amplitude value. The histogram is a finite record length estimate of the signals probability 
distribution. SBench 6 offers the ability to create histograms of acquired waveforms. Some 
examples are shown in Figure 10 including sine, triangle, and noise waveforms and their 
associated histogram distributions.

The top row of waveforms show a sine, triangle and noise waveforms. Below them are the 
associated histograms. 

The horizontal axis of the histogram represents the amplitude of the signal. The vertical axis 
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Figure 9: : Showing the effects of applying an FIR band pass filter with cutoff 
frequencies of 30 to 50 kHz to the 40 kHz ultrasonic signal.The raw waveform and its 
FFT are on the left side of the display.The filtered signal and its FFT are on the right 
side. Note the flatness in the filtered baseline, the result of eliminating the low 
frequency pickup.
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shows the number of values in a small range of values (binning).

Each histogram distribution is 
distinct and the difference is 
related to the signal 
characteristics. The 
distribution of the sine wave 
shows high peaks on either 
extreme and a saddle shaped 
mid-region. The reason for 
this shaping is that the 
sinewave’s rate of change 
varies through each cycle. It is 
highest at the zero crossing 
and slowest at the peaks. If 
the sine is sampled at a 
uniform sampling rate there 
will be more samples at the 
positive (rightmost peak in the 
histograms) and negative (left 
most peak) peaks and the 
fewest samples at the zero 
crossing (in the center of the 
histogram horizontally).

The triangle wave has a 
constant slope, either positive 
or negative. The resulting 
histogram has a uniform distribution except at the extremes. The peaks are there because 
the signal generator has limited bandwidth which rounds the peaks and a greater number of 
samples are acquired at those points.

The histogram of the noise signal results in 
a Gaussian or normal distribution. I 
probably don’t have to spend too much 
time on that distribution for those who 
have taken a statistics course. The unique 
characteristic of the Gaussian distribution 
is that it is not bounded. The other 
distributions have amplitude limits, the 
horizontal range is fixed. The Gaussian 
distribution has ‘tails’ which extend 
theoretically to infinity (in practical 
instruments the tails will be limited by 
clipping in the analog to digital converter). 

So histograms tell their own stories about 
acquired signals. They are good at 
showing up asymmetries (distortion) and 
low probability ‘glitches’ in waveforms. 
Figure 11 shows a histogram of a sine 
wave with a glitch at the zero crossing.

The histogram clearly shows significant peaks near the zero crossing that are not present in 
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Figure 10: Some example of common waveforms including sine, triangle, and noise 
and their associated histograms

Figure 11:A sine wave exhibiting a zero crossing glitch 
and its associated histogram.Note the peaks near the 
center of the histogram
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the sine histogram in Figure 10. 

Conclusion

Signal processing tools like analog calculations, averaging, FFT, filtering and histograms help 
interpret acquired data and derive secondary signals yielding greater insight into you data. 
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